CE 638 Design of Hydraulic Structures

College: Engineering
Department: Civil
First: Course Definition
1- Course Code: CE 638
2- Units: 3
3- Semester:
4- Prerequisite:
5- Co-requisite:
6- Location (if not on main Campus):

Second: Course Objectives

- Integrate the hydraulics and water resources background by involving the students in water structures design applications.
- Introduce the students to professional practice and design codes.
- Encourage class discussions for formulating and solving multi-variable hydraulic design problems in an open-ended solution space.
- To develop understanding of the basic principles and concepts of analysis and design of hydraulic structures.

Third: Course Specifications

1- Topics to be covered				
Subject	No of Weeks	Units		
Design of canals and drains.	2	6		
Design of culverts, head works and outlet works.	2	6		

Design of dams and falls.	2	6
Design of canal transitions.	2	6
Design of cross drainage works.	2	6
Design of energy dissipation structures.	2	6
Design of flood control structures.	2	6

2- Course components (Total hrs in the Semester): 42

Lecture	Exercise	Other
42	-	0

3- Intended Learning Outcomes of the Course (ILO's)

a. Knowledge

i) Description of the knowledge to be acquired:

- Collect different methods of canals and drain's design.
- Principles of flow in culverts, head works and outlet works.
- Types of dams and its design.
- Usefulness of cross drainage works and its design.
- Methods and structures of dissipation flow energy.
- Flood control structures.

ii) Teaching strategies to be used to develop that knowledge

- Class lectures.
- Term projects.
- Students' presentations.
- Group discussion.
- -

iii) Methods of assessment of knowledge acquired

- Exams.
- Quizzes.
- Homework assignments.
- Term projects.

b- Cognitive (Intellectual) Skills

i) Cognitive skills to be developed

- Advanced concepts of hydraulic structures analysis and design.
- Flow problem modeling.
- Numerical and computational models in hydraulic engineering.

ii) Teaching strategies to be used to develop these cognitive skills

- Class lectures.
- Case studies analysis.
- Term projects.

iii) Methods of assessment of students' cognitive skills

- Students' seminars and presentations.
- Term projects.
- Written reports.

c. Interpersonal Skills and Responsibility

i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- Decision making based on engineering analysis.
- Communication skills.
- Team work.

ii) Teaching strategies to be used to develop these skills

- Class lectures.
- Term projects.
- Case studies analysis.
- Field trips.

iii) Methods of assessment of students' interpersonal skills and capacity to carry responsibility

- Term project.
- Written reports.
- Students' seminars and presentations.

d. Communication, Information Technology and Numerical Skills

i) Description of the skills to be developed in this domain

- Literature research.
- Problems modeling.
- Utilization of computer applications in analysis and design.

ii) Teaching strategies to be used to develop these skills

- Class lectures.
- Case studies analysis.
- Computer lab sessions.
- Term projects.

iii) Methods of assessment of students numerical and communication skills

- Term projects.
- Written reports.
- Students' seminars and presentations.

e. Psychomotor (if applicable) & Other Non-cognitive Skills

i) Description of the psychomotor or other skills to be developed and the level of performance required

- NA
- _

ii) Teaching strategies to be used to develop these skills-

- NA

_

iii) Methods of assessment of student's psychomotor skills

- NA

_

4- Student Assessment Schedule

Serial	Assessment tool (test, group project, examination etc.)	Week due	Weight
1	Term Project – 1	3 rd	15 %
2	Mid Term Exam -1	7 th	15 %
3	Reports	10 th	15 %
4	Term Project – 3	13 th	15 %
5	Final Exam	16 th	40 %

5- Student Support

- Providing electronic library of textbooks and scientific periodicals.

- Providing the necessary computer applications for the course.

6- Learning Resources

i) Essential Books (References)

- Vischer, D.L. and Hager, W. H. " Dam Hydraulics," John Wiley & Sons, New York, 1992.
- "Design of Small Dams," US Dept. of Interior, Bureau of Reclamation, 1977.
- Yanmaz A. M. " Applied Water Resources Engineering," METU press, 2001.
- Roberson, J.A., Cassidy, J.J. and Chaudhry, M.N. " Hydraulic Engineering," John Wiley & Sons, New York, 1995.
- Mays, L.W. "Hydraulic Design Handbook," McGraw-Hill Professional; 1st edition, 1999.

ii) Course Notes

- NA

_

iii) Recommended Books

- Hydraulic structures, 4th Edition: P. Novak, A.I.B. Moffat, C. Nalluri and R. Narayanan, Taylor and Francis Group, ISBN:9780415386265
- Theory and Design of Irrigation Structures Vol. II, Latest Ed, R. S. Varshney et al

iv) Electronic Books & Web Sites:

- Scientific journals and forums.
- Instructor's instruction.

v) Periodicals

- ASCE scientific journals.

7- Course Evaluation and Improvement Processes

i) Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Students' questioners.
- Students' evaluation of course and instructor.

ii) Other Strategies for Evaluation of Teaching by the Instructor or by the Department

Public faculty seminars.

- Assessment by external evaluators of students achievements.
- Instructor (Course) Report

iii) Processes for Improvement of Teaching

- Assessment of students' work by external examiners.
- Analysis of students' evaluation of course and instructor.
- Seminars by industry professionals.

iv) Processes for verifying standards of student achievement

- Check marking by an independent faculty member of a sample of student work.
- Periodic exchange and remarking of a sample of assignments/exams with a external evaluator.

v) Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- Assessment and evaluation of the level of achieving the course outcomes through a continuous improvement process (part of a quality assurance system established by the university),
- Consequently, actions are to be taken to improve the course delivery when necessary.
- Review of the course objectives, outcomes and curriculum every 2 years.