Ministry of Higher Education

**Qassim University** College of Engineering



### **Automation & Robotics**

| College: Engineering                                                              |
|-----------------------------------------------------------------------------------|
|                                                                                   |
| Department: Electrical                                                            |
|                                                                                   |
| First: Course Definition, a Summary:                                              |
|                                                                                   |
|                                                                                   |
| 1- Course Code: EE 615                                                            |
|                                                                                   |
| 2- Units: 3 credit hrs                                                            |
|                                                                                   |
| 3- Level: 3 <sup>rd</sup>                                                         |
|                                                                                   |
| 4- Prerequisite: Basic knowledge of mechatronics, robotics, industrial automation |
| is required                                                                       |
|                                                                                   |
| 5- Co-requisite:                                                                  |
|                                                                                   |
| 6- Location (if not on main Campus):                                              |
|                                                                                   |
| Second: Course Objectives                                                         |

- Give students an appreciation of the Automation and Control which are pervasive enabling technologies, found in almost any modern technical system, in particular in Production and Transportation System.
- Robots are key components in modern factories and will increasingly be used in the service sector and for unmanned operations in hostile environments. Thus there is a growing need for engineers who can design, maintain and upgrade those complex automation systems.
- This course enhances the student's knowledge and skills in the areas of Programmable Logic Controllers (PLC), Sensor Technology, Industrial Robotics, and Design & Integration of an Automated System (e.g., flexible manufacturing
- It also provides the necessary foundations for a professional career in the field of Automation, Control and Robotics in the information age.

#### **Third: Course Description**

Ministry of Higher Education

**Qassim University**College of Engineering



المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسيه

| 1- Topics to be covered                                                                                                                                                                                                                                                                     |             |       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|--|--|
| Subject                                                                                                                                                                                                                                                                                     | No of Weeks | Units |  |  |
| <ul> <li>Introduction to Robotics &amp; Automation and Robotic<br/>Applications</li> </ul>                                                                                                                                                                                                  | 1           | 3     |  |  |
| <ul> <li>Industrial Robots Classification – Kinematic<br/>Structure, Work envelope, Control System &amp;<br/>Actuation</li> </ul>                                                                                                                                                           | 2           | 6     |  |  |
| Robot Kinematic Design                                                                                                                                                                                                                                                                      | 2           | 6     |  |  |
| <ul> <li>Electric Actuators &amp; Control Techniques - DC<br/>Motors, Induction Motors</li> </ul>                                                                                                                                                                                           | 2           | 6     |  |  |
| <ul> <li>Synchronous AC motors</li> <li>Other actuators (Pneumatic, Hydraulic, Non traditional – SMA, Air muscle)</li> <li>Robot Transmission Components - Conventional components (Gear drives, Belt drives &amp; Chain drives), Ballscrew assemblies, Harmonic drives, Sensors</li> </ul> | 3           | 9     |  |  |
| <ul> <li>Robot controllers &amp; programming</li> <li>Kinematic analysis of Planar &amp; SCARA Robots</li> <li>Common Automation Systems</li> </ul>                                                                                                                                         | 3           | 9     |  |  |
| Automated Systems & Programmable Logic     Controllers (PLCs)                                                                                                                                                                                                                               | 2           | 6     |  |  |

### 2- Course components (Total hrs in the Semester: 60

| Lectures | Exercises | Other |
|----------|-----------|-------|
| 45       |           |       |

# 3- Intended Learning Outcomes of the Course (ILO's)

# a. Knowledge

#### i) Description of the knowledge to be acquired:

- Industrial Automated Applications
- Robotic Kinematic Design
- Control Techniques

#### ii) Teaching strategies to be used to develop that knowledge

- Class lectures

Ministry of Higher Education

# **Qassim University**

College of Engineering



- Students' presentations
- Group discussion in the Class
- Assignments
- Case study Report (data collection, internet search, and reporting

#### iii) Methods of assessment of knowledge acquired

- Exams
- Quizzes
- Homework assignments
- Term projects

#### b- Cognitive (Intellectual) Skills

#### i) Cognitive skills to be developed

- The ability to analyze, and determine the automation applications
- Ability to design kinematics
- Ability to analyze PLCs

# ii) Teaching strategies to be used to develop these cognitive skills

- Class lectures
- Case studies analysis
- Term projects

#### iii) Methods of assessment of students' cognitive skills

- Students' seminars and presentations
- Term projects
- Written reports

#### c. Interpersonal Skills and Responsibility

#### i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- Decision making based on engineering analysis
- Communication skills
- Team work

#### ii) Teaching strategies to be used to develop these skills

- Reports
- Term team projects
- Presentations and seminars

### iii) Methods of assessment of students' interpersonal skills and capacity to carry responsibility

- Evaluation of the team projects
- Written reports

Ministry of Higher Education

# College of Engineering

**Qassim University** 



المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم

- Students' seminars and presentations

#### d. Communication, Information Technology and Numerical Skills

#### i) Description of the skills to be developed in this domain

- Literature search
- Problems numerical modelling
- Utilization of computer applications in analysis and design

#### ii) Teaching strategies to be used to develop these skills

- Class lectures
- Case studies analysis
- Computer lab sessions
- Term projects

#### iii) Methods of assessment of students numerical and communication skills

- Term projects
- Written reports
- Students' seminars and presentations

#### e. Psychomotor (if applicable) & Other Non-cognitive Skills

## i) Description of the psychomotor or other skills to be developed and the level of performance required

\_ NA

#### ii) Teaching strategies to be used to develop these skills-

- NA

#### iii) Methods of assessment of student's psychomotor skills

- NA

#### 4- Student Assessment Schedule

| Serial | Assessment tool (test, group project, examination etc.) | Week due         | Weight |
|--------|---------------------------------------------------------|------------------|--------|
| 1      | Term Project                                            | 3 <sup>rd</sup>  | 30 %   |
| 2      | Mid Term Exam -1                                        | 7 <sup>th</sup>  | 20 %   |
| 5      | Final Exam                                              | 16 <sup>th</sup> | 50 %   |

### 5- Student Support

Ministry of Higher Education

**Qassim University**College of Engineering



لمملكة العربية السعودية وزارة التعليم العالي

جامعة القصيم كليه الهندسه

- Providing electronic library for references and scientific periodicals. Students have access to the ieeeXplore and ScienceDirect digital libraries of the IEEE and Elsevier respectively
- Providing the necessary computer applications for the course.

# **6- Learning Resources**

#### i) Essential Books (References)

- Mathematical Introduction to Robotic Manipulation by Richard M. Murray, Zexiang Li, S. Shankar Sastry
- Robot Manipulator Control: Theory and Practice (Control Engineering, 15) by Frank L. Lewis, et al
- Introduction to Robotics: Mechanics and Control (3rd Edition) by John J. Craig
- Programmable Logic Controllers, John W. Webb, R. A. Reis, 6th Ed., Prentice Hall, 2006
- Fundamentals of Programmable Logic Controllers, Sensors, and Communications, Jon Stenerson, 3nd Ed., Prentice Hall, 2005
- Sensors & Control Systems in Manufacturing, S. Soloman, McGraw-Hill, 1994

*ii) Course Notes* Course materials are uploaded on the College Web-Site (www.qec.edu.sa) to be available for the students.

#### iii) Recommended Books

Production Systems, & Computer-Integrated Manufacturing, Mikell P. Groover, 2nd Ed., Prentice Hall

Introduction to Robotics Analysis, Systems, Applications by Saeed B. Niku Fundamentals of Robotics Analysis & Control Robert J. Schilling

#### iv) Electronic Books & Web Sites:

- Scientific journals and forums.

Students have access to the ieeeXplore and ScienceDirect digital libraries of the IEEE and ElSevier respectively

#### v) Periodicals

-IEEE and Elservier Journals

#### 7- Course Evaluation and Improvement Processes

Ministry of Higher Education

**Qassim University**College of Engineering



المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسه

#### i) Strategies for Obtaining Student Feedback on Effectiveness of Teaching

- Students' Questionnaires
- Observing the students opinions recorded in the college student site
- Appeal box
- Carrying out extensive questioners by a sample of the distinguished students just after the graduation from the college

# ii) Other Strategies for Evaluation of Teaching by the Instructor or by the Department

- Instructor report
- Public faculty seminars
- Periodical review of the teaching methods by both the department council and the education affairs vice dean

#### iii) Processes for Improvement of Teaching

- Assessment of students' work by external examiners
- Analysis of students' evaluation of course and instructor
- Seminars by industry professionals
- Evaluation of the course outlines and student works by external staff member
- Periodical contact with different engineering authorities and industries for evaluating and getting their feedback and suggestions concerning the course outlines

#### iv) Processes for verifying standards of student achievement

- Check marking by an independent faculty member of a sample of student work
- Periodic exchange and remarking of a sample of assignments/exams with a external evaluator

# v) Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement.

- Assessment and evaluation of the level of achieving the course outcomes through a continuous improvement process (part of a quality assurance system established by the university)
- Consequently, actions are to be taken to improve the course delivery when necessary
- Review of the course objectives, outcomes and curriculum every 2 years