Ministry of Higher Education

Qassim UniversityCollege of Engineering

المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسه

Dielectric and Electrical Insulation

College: Engineering
Department: Electrical Engineering
First: Course Definition
۱- Course Code: EE 647
2- Units (*)
3 – Semester (2)
٤ -Prerequisite – PHY 104
5- Co-requisite- None
6- Location (if not on main Campus):

Second: Course Objectives

Upon completion of this course, the student will be able to:

- 1- To understand the basics of dielectric physics of insulating materials.
- 2- To understand conduction and breakdown mechanisms in gaseous, liquid and solid insulating materials
- 3- To get familiar with various applications of insulating materials are used.

Ministry of Higher Education

Qassim University
College of Engineering

المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسه

Third: Course Specifications						
1- Topics to be covered						
Topic	Sub-Topics	Weeks	Lectures			
Gaseous Dielectrics	 Theory of gases; Ionization by collision, photoionization, thermal ionization and ionization by x-rays and cosmic rays; Deionization due to recombination, negative; ion formation, and diffusion Behavior of charged particles in electric fields of low E/P and high E/P (E = electric field and P = pressure) Townsend mechanism, secondary effect, streamer formation, self-sustained discharges to breakdown Breakdown in non-uniform fields, temporal development of breakdown, partial breakdown or corona discharges 	5	15			
Liquid Dielectrics	 Types of liquid insulating materials, their electrical, thermal, and chemical properties Charge transport; breakdown mechanisms; effects of impurities on breakdown strength Electrohydrodynamics and its influence on breakdown mechanisms in liquids Streaming electrification 	5	15			
Solid Dielectrics	 Sources of current carriers 	5	15			

Ministry of Higher Education

Qassim UniversityCollege of Engineering

المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسه

 Surface discharges; thermal, electrochemical, electromechanical Intrinsic breakdown strength of solids Tracking and breakdown of solids due to discharges 	
---	--

2- Course components (Total hrs in the Semester: 45

Lecture	Exercise	Other
45		

3- Intended Learning Outcomes of the Course (ILO's)

a. Knowledge

i) Description of the knowledge to be acquired:

- Develop and apply the Ionization by collision, photoionization, thermal ionization and ionization by x-rays and cosmic rays; Deionization due to recombination, negative; ion formation, and diffusion
- Apply the Behavior of charged particles in electric fields of low
- Develop and apply Townsend mechanism, secondary effect, streamer formation, self-sustained discharges to breakdown.
- Develop and apply the calculation of breaking voltage for the insulating materials
- Apply the partial discharge mechanism calculation for the insulating materials.
- ii) Teaching strategies to be used to develop that knowledge
 - Lectures
 - Assignments, at home
 - Discussions in the Class
 - Case study Report (data collection, internet search, and reporting)

iii) Methods of assessment of knowledge acquired

- Quizzes: to assess understanding of the course knowledge.
- Assignment reports: to assess ability to answer some comprehensive questions.
- Midterm Exams: to assess understanding of the course knowledge.

b- Cognitive (Intellectual) Skills

Ministry of Higher Education

Qassim UniversityCollege of Engineering

مملكه العربيه السعوديه وزارة التعليم العالي جامعة القصيم كليه الهندسه

i) Cognitive skills to be developed

- The ability to select the type of insulating Materials.
- The ability to design a model to calculate the insulating Material Breakdown,
- The ability to design a model to measure the effect of impurities and insulating material Pollution.

ii) Teaching strategies to be used to develop these cognitive skills

- Lectures
- Assignments, at home
- Discussions in the Class
- Case study Report (data collection, Internet search, and reporting)

iii) Methods of assessment of students cognitive skills

- Quizzes: to asses the ability to solve quickly some problems.
- **Assignment reports:** to asses the ability to solve and analyze some comprehensive problems.
- **Midterm Exams:** to assess the ability to discuss, analyze, and solve the associated problems.
- **Final Exam**: to assess the intellectual skills such as analytical skills and ability to solve machine problems

•

c. Interpersonal Skills and Responsibility

i) Description of the interpersonal skills and capacity to carry responsibility to be developed

- Team work
- Ideas development and sharing with others

ii) Teaching strategies to be used to develop these skills

- Assignments, at home
- Discussions in the Class
- Case study Report (data collection, Internet search, and reporting)

iii) Methods of assessment of students interpersonal skills and capacity to carry responsibility

- Unified reports and Seminars: to assess the integration done by the student in a unified report and presentations.
- Oral Group Exams: to assess interactive and communication abilities.

d. Communication, Information Technology and Numerical Skills

Ministry of Higher Education

Qassim UniversityCollege of Engineering

المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسه

i) Description of the skills to be developed in this domain

- Use of the internet search
- Technical report writing
- ii) Teaching strategies to be used to develop these skills
- Assignments, at home
- Assignment Reports (data collection, Internet search, and reporting)
- iii) Methods of assessment of students numerical and communication skills
- Assignment Reports: to assess technical report writing abilities.
- Discussion Groups: to assess interactive and communication abilities.-

e. Psychomotor (if applicable) & Other Non-cognitive Skills

i) Description of the psychomotor or other skills to be developed and the leve performance required	of
••••••	
ii) Teaching strategies to be used to develop these skills-	
iii) Methods of assessment of student's psychomotor skills	

4- Student Assessment Schedule

Serial	Assessment tool (test, group project, examination etc.)	Week due	Weight
1	Quiz (1)	4	2%
2	Mid-Term(1)	6	15%
3	Quiz (2)	8	2%
4	Mid-Term Exam (2)	12	15%
5	Attendance		2%
6	Home work-Mini-project	13	14%
6	Final Exam	16	50%

5- Student Support

Four office hours per week are offered by the instructor to aid the students and support them.

Ministry of Higher Education

Qassim UniversityCollege of Engineering

المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسه

6- Learning Resources

• Essential Books (References)

- S. Stoft, Power System Economics: Designing markets for electricity, Wiley-Interscience, 2002.
- A. J. Wood and B. F. Wollenberg, Power generation, operation and control, Wiley-Interscience, 2nd Edition, 1996.
- K. Bhattacharya, M.H.J. Bollen and J.E. Daalder, Operation of restructured power systems, Kluwer Academic Publishers, 2001
- M. Shahidehpour, H. Yamin and Z. Li, Market operations in electric power systems, Wiley Interscience, 2002
- D. S. Kirschen and G. Strbac, Fundamentals of power system economics, John Wiley and Sons, 2004
- N. S. Rau, Optimization principles: Practical Applications to the Operation and Markets of the Electric Power Industry, Wiley-IEEE Press, 2003.

ii) Course Notes

. -----

iii) Recommended Books

(iv) Electronic Books & Web Sites: Selected review papers from the field of Insulating material uses.

v) Essential Tools

High Voltage engineering Laboratory is required.

Simulation Software requirements Finite Element Method software to calculate HV

7- Course Evaluation and Improvement Processes

- i- Strategies for Obtaining Student Feedback on Effectiveness of Teaching
 - Questionnaire,
 - Observing the students opinions recorded in the college student site
 - Appeal box
 - Carrying out extensive questioners by a sample of the distinguished students just after the graduation from the college.
 - i) Other Strategies for Evaluation of Teaching by the Instructor or by the Department
 - Periodical review of the teaching methods by both the department council and the education affairs vice dean.-
 - Ouestionnaire,
 - Observing the students opinions recorded in the college student site

Ministry of Higher Education

Qassim UniversityCollege of Engineering

المملكة العربية السعودية وزارة التعليم العالي جامعة القصيم كليه الهندسه كليه الهندسه

- ii) Processes for Improvement of Teaching
 - Evaluation of the course outlines by external staff member from outside the university
 - Periodical contact with the different engineering authorities and industries for evaluating and getting their feedback and suggestions concerning the course outlines.
- iii) Processes for Verifying Standards of Student Achievement

It is planned to:

- Check marking of a sample of student work by an independent faculty member.
- Exchange periodically, and remark a sample of assignments with a faculty member in King Saud University (KSU).
- v) The planning arrangements for periodically reviewing course effectiveness and planning for improvement.
 - Assessment and evaluation of the level of achieving the course outcomes through a continuous improvement process (part of a quality assurance system established by the university),
 - Consequently, actions are to be taken to improve the course delivery when necessary.
 - Review of the course objectives, outcomes and curriculum each 2 years.