

كليه الهندسه

Combustion and Fuel

College: Engineering

Department: Mechanical Eng. Dept.,

First: Course Definition

1- Course Code: ME 678

2- Units: 3 credit hrs

3- Semester:

4- Prerequisite: N

5- Co-requisite: N

6- Location (if not on main Campus):

Second: Course Objectives

- 1- To build up knowledge of the concepts and theories of a of classical fuel combustion.
- 2- To develop understanding of the basic principles and concepts of advanced fuel combustion and control process
- 3- To provide students with the required skills for analyzing thermal cycles.
- 4- To be familiar with the fundamental physical and chemical principles regarding formation and control of air pollutants in industrial and technological processes.

Third: Course Specifications

1- Topics to be covered				
Subject	No of Weeks	Units		
INTRODUCTION TO COMBUSTION PROCESSES				
Energy and Combustion, the Fuel-Engine Interface, Engineering1Science and Combustion, Engineering and Applied Combustion1				
COMBUSTION AND ENTROPY				
Equilibrium and Chemical Reactions, Entropy, Gibbs and Hemholtz Functions, Equilibrium Constants, The Fuel Cell.	2	6		
CHEMICAL KINETICS				
Kinetic Theory of Gases, Collision Theory and Chemical Reactions, Complex Chemical Kinetics Mechanisms, Nitrogen-Oxygen	1	3		

المملكة العربية السعودية

وزارة التعليم العالي **جامعة القصيم**

كليه الهندسة

Chemical Kinetics, Basic Flame Theory.		
SOLID FUELS		
Solid Fuel Thermo-chemistry, Coal and Other Solid Fuel Resources,	1	2
Solid Fuel Combustion, Solid Fuel Combustion Pollution Control,	1	3
Boiler Energy Balance.		
LIQUID FUELS		
Liquid Fuel Properties, Crude Oil and Distillate Fuels, Synthetic	1	2
Liquid Fuels. Unconventional Liquid Fuels. Liquid Fuel Combustion	1	3
and Burners.		
GASEOUS FUELS		
Gaseous Fuel Properties, Natural Gas, Coal-Derived Gaseous Fuels,		
Biomass and Synthetic Natural Gas, Hydrogen, Gaseous Fuel	1	3
Burners.		
SPARK-IGNITION ENGINE COMBUSTION		
Thermodynamics and Spark-Ignition Engine Modeling, Fuel		
Thermo-chemistry and Spark-Ignition Engines, Spark-Ignition I.C.	2	6
Engine Combustion Chemistry, Spark-Ignition I.C. Engine	2	0
Emissions, Spark-Ignition Engine Fuel Alternatives. The Wankel		
Rotary Engine.		
COMPRESSION-IGNITION ENGINE COMBUSTION		
Thermodynamics and Compression-Ignition Engine Modeling, Fuel		
Thermo-chemistry and Compression-Ignition Engines, Compression-		
Ignition I.C. Engine Combustion Chemistry, Compression-Ignition	2	6
I.C. Engine Emissions, Compression-Ignition Engine Fuel		
Alternatives, Advanced Spark- and Compression-Ignition		
Combustion Concepts.		
GAS TURBINE ENGINE COMBUSTION		
Thermodynamics and Gas Turbine Engine Modeling, Gas Turbine		
Fuel Thermo-chemistry, Gas Turbine Combustors, Gas Turbine	1	3
Engine Fuel Alternatives, Gas Turbine Engine Emissions, The Free		
Piston and Stirling Engines.		
THERMAL DESTRUCTION		
Introduction, Thermal Destruction Combustion Chemistry, Basic		~
Elements of Thermal Destruction, Thermal Destruction Components,		3
Thermal Destruction Configurations, Environmental Regulations and		
I hermal Destruction.		-
SEMESTER PROJECT DESIGN OF COMBUSTION ENGINE	2	6

2- Course components (Total <u>60</u> hrs in the Semester)

Lecture (hr)	Exercise (hr)	Other
45		

المملكة العربية السعودية

وزارة التعليم العالي **جامعة القصيم**

كليه المندسه

3- Intended Learning Outcomes of the Course (ILO's)

a. Knowledge

i) Description of the knowledge to be acquired:

- 1. Outline the basics, theory and physical concepts of combustion.
- 2. Recognize the different types fuels used in combustion.
- 3. Understand and analyze the combustion in the internal combustion engines.
- 4. Recognize the different configurations of flames and boundary layer combustion.
- 5. Understand Combustion stoichiometry and chemical equilibrium.
- 6. Advanced treatment of fundamental combustion processes.

ii) Teaching strategies to be used to develop that knowledge:

- Class lectures .
- Term projects. -
- Students' presentations. _
- Group discussion.

iii) Methods of assessment of knowledge acquired:

- Exams.
- Ouizzes.
- Homework assignments.
- -Term projects.

b- Cognitive (Intellectual) Skills

i) Cognitive skills to be developed:

- Analyze the combustion process.
- Differentiate among different fuels combustion.
- Capability of recognition different engine designs.
- Analysis & discussion of the engine data.

ii) Teaching strategies to be used to develop these cognitive skills:

Class lectures.

- Case studies analysis.
- Problem assignments and Students' presentations.
- Reports.
- Group discussion
- Term projects.

iii) Methods of assessment of students' cognitive skills:

- Students' seminars and presentations.
- Quizzes.
- Term projects.

المملكة العربية السعودية

وزارة التعليم العالي **جامعة القصيم**

كليه المغدسيه

- Written reports.

C. Interpersonal Skills and Responsibility

- i) Description of the interpersonal skills and capacity to carry responsibility to be developed:
- Decision making based on engineering analysis.
- Communication skills.
- Team work.

ii) Teaching strategies to be used to develop these skills:

- Class lectures.
- Term projects.
- Case studies analysis.

iii) Methods of assessment of students' interpersonal skills and capacity to carry responsibility:

- Term project.
- -Written reports.
- -Students' seminars and presentations.

d. Communication, Information Technology and Numerical Skills

i) Description of the skills to be developed in this domain:

- Use of the internet search for course related issues.
- -Write acceptable technical report.
- Verbally present technical report.

ii) Teaching strategies to be used to develop these skills:

- Reading assignments and Students' presentations.
- Case study (data collection, Internet search, and reporting). -
- -Reports.
- Group discussion.

iii) Methods of assessment of students numerical and communication skills:

- Term projects.
- Written reports.
- -Students' seminars and presentations.

e. Psychomotor (if applicable) & Other Non-cognitive Skills

i) Description of the skills to be developed in this domain:

- Not Applicable.

المملكة العربية السعودية

وزارة التعليم العالي **جامعة القصيم**

كليه المندسه

ii) Teaching strategies to be used to develop these skills:

- Not Applicable.

iii) Methods of assessment of student's psychomotor skills: Not Applicable

4- Student Assessment Schedule

Serial	Assessment tool (test, group project, examination	Week due	Weight
	<i>etc.</i>)		
1	Four quizzes	Weeks 5, 8, 9 and 14	10 %
2	Two mid-term exams	Weeks 6 and 12	20 %
3	Mostly eight assignments (in-class/out-class) and	Weeks 3, 5, 7, 9, 11,	
	homework. This number may increases according to	12, and 14	16 %
	the instructor view.		
4	Attendance	All weeks	4 %
5	Final Exam	Week 16	50%

5- Student Support:

- Providing electronic library of textbooks and scientific periodicals.
- Providing the necessary computer applications for the course.

6- Learning Resources

i) Essential Books (References):

- Applied combustion, by Eugene L. Keating, Environmental Kinetics, Ltd, Arnold, Maryland, CRC Press, Taylor & Francis Group, 2007. ISBN-13: 978-1-57444-640-1 (alk. paper)

ii) Course Notes:

-NA

iii) Recommended Books:

- Internal Combustion Engines Fundamentals, by John B. Heywood, McGraw-Hill Book company, ISBN 0-07-100449-8

iv) Electronic Books & Web Sites:

- Scientific journals and forums.
- -Instructor's instruction.

v) Periodicals:

- Journal of Combustion and Flame
- http://www.sciencedirect.com/science/journal/00102180

المملكة العربية السعودية

وزارة التعليم العالي **جامعة القصيم**

كليه المندسيه

7- Course Evaluation and Improvement Processes:

i) Strategies for Obtaining Student Feedback on Effectiveness of Teaching:

- Students' questioners.

-Students' evaluation of course and instructor.

ii) Other Strategies for Evaluation of Teaching by the Instructor or by the Department:

- Public faculty seminars.

-Assessment by external evaluators of students achievements.

iii) Processes for Improvement of Teaching:

- Assessment of students' work by external examiners.
- Analysis of students' evaluation of course and instructor.
- -Seminars by industry professionals.

iv) Processes for verifying standards of student achievement: - Check marking by an independent faculty member of a sample of student work.

v) Describe the planning arrangements for periodically reviewing course effectiveness and planning for improvement: .

- A continuous improvement process through adopting a closed loop assessment/improvement. The process depends on assessment by all stake holders for the M.Sc. program educational outcomes ending with proposing the necessary improvements.