

وصف مقرر دراسي Course Description

متطلب متزامن	متطلب سابق	تمارين	عملي	نظري	الساعات	اســــــم المقـــــرر	رقم ورمز المقرر
Co-Req.	Pre-Req	TU	LB	LT	CR	Course Title	Course Code
-	467 همك	1		3	3	الروبوتات	466 همك
-	ME 467	•		3	3	Robotics	ME 466

محتويات المقرر:

مقدمة عن الروبوتات الصناعية وتطبيقاتها ، النقل والتوصيف الفراغى ، الكينماتيكا الأمامية والعكسية ، جاكوبينات توليد المسار ، السرعات والقوى الإستاتيكية ، ديناميكا المناولات الروبيتية ، التحكم فى المناولات الروبيتية ، برمجة الروبيتات ، حساسات ورؤية الروبيتات .

Course Contents:

Introduction to robotics and their applications, spatial descriptions and transformation, manipulator forward kinematics, manipulator inverse kinematics, trajectory generation Jacobians: velocities and static forces, manipulator dynamics, control of manipulators, robot programming, robot sensors and vision.

Course Objectives:

The objective of this course is to introduce students to the principles of robotics. The main topics of interest covered in the textbook include: transformations in 3D, kinematics, inverse kinematics, dynamics, and control. Upon successful completion of the course, students must be able to: Apply transformations in 3D, Describe rotations in space using quaternion algebra, Derive models for the forward and inverse kinematics of a manipulator, Describe the dynamics of a manipulator, Implement simple robot control laws, Evaluate the computational complexity of these algorithms, Describe robot sensing techniques, Understand the real-time control and programming issues.

Evaluation Methods:

- 1. Midterm exams
- 4. Lab. Reports

2. Assignments

5. Final exam

3. Quizzes

Text Book and References:

TEXTBOOK

Robotics: Modelling, Planning and Control, by B. Siciliano L. Sciavicco, 2007, Springer

REFERENCES

Robot Modeling and Control. M. W. Spong, John Wiley & Sons Canada, Ltd.

Introduction to Robotics: Mechanics and Control. J.J. Craig, Addison-1989, Wesley, Reading, MA