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Abstract. The present paper deals with the analysis of theweur of an earth dam at the end of
construction, during the first filling of the reseir and at long term by using Finite Element Methdn

this analysis, El Hma dam, which located in Tunibis been selected as a case study. Three ctimstitu
laws including elastic, Mohr-Coulomb and Druckeag®r, were assumed to present the material
characteristics of the dam and its foundation. mttm will be given to the study of predicted
deformation, stresses and pore pressure distrilaitibhe interpretations of the predicted resuksl ®
evaluate the dam behaviour.

Keywords: earth dam, Finite Element Modelling, Constitutivedals.
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1. Introduction
Prediction of the deformations of an earth dam A&asignificant effect on its
performance and safety. Significant movements atitesnents of the crest and the
body of the dam can occur during various stagabefconstruction of the dam, at
the end of construction, the first filling of theservoir and during the operation of
the dam.

The first filling of the reservoir is the most impant stage in the earth dam
construction because the effect of wetting. Indrep®f water level in reservoir
involves the deacrease in geotechnical propertyegabnd the Young modulus of
the material in the submerged sections of the &treac Once the filling of the
reservoir is completed, the dam undergoes long-tformations [1]. The weight
of the embankment and the pressure of the resematar involve the fill material to
settle resulting in a vertical movement of the ctiuee. The reservoir water pressure
also causes permanent horizontal deformation pdipelar to the longitudinal axis
of embankment. However large permanent deformaticosld occur due to
reservoir drawdown [2].

On the hand, in embankment dams the progresdiofyfipf the reservoir will
develop a considerable pore pressure within the obthe dam. The increasing of
water level in the reservoir may double the porssgure in the core due to seeping
the water within the dam which may lead to exces® pressure in the core ending
to hydraulic fracturing of the dam.

Today, the finite element method has become estadli as a useful tool to
model the deformation of earth dams. The concepheffinite element method,
which is used to analyze expected displacemeninst stresses and pore water
pressures in the structure associated with diffdoading and boundary conditions,
is extensively described by Zienkiewicz [3]. To foem the finite element analysis
of the dam, the selection of the material modesisential [4]. Recently, efforts has
been devoted toward the development of more sopdtist! and refined constitutive
models, which resemble the behaviour of real erging materials more closely
[5]. More constitutive models associated with vasaegrees of sophistication and
complexity, have been reported in the literatude f6new generation of programs
and codes can now be run comfortably on a persmmaputer.

In this paper, emphasis is given on practical @pfibns of the finite element
method to analyze the deformation of an earth daniima dam, which located in
Tunisia, has been selected as case of study. BHsemqed results are limited to only
one cross-section in the middle of the dam. Threesiitutive models including
Elastic, Mohr Coulomb and Drucker-Prager, were @&zl to present the
construction material characteristics of the dand @#s foundation, have been
considered.

Finite element analyses were conducted using widséd commercial finite
element software package ABAQUS [7], which is depeld by Hibbitt, Karlsson
and Sorensen, Inc. It is a general-purpose comaiefitiite element software,
capable of performing linear and non-linear analy$&oreover, it has many built-in
material models for many types of analyses in iemal library.
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However the most critical problem in predicting alefiations of earth dams
by using finite element modelling is to obtain ceristics of the fill materials.
The difficulty in determining material characteiést is the main cause of
uncertainty in modeling of deformations. Resultspofperly monitoring schemes
may be used to enhance the predicted model. Dtieetaincertainty of the model
parameters [8], the monitored deformations of ElaHtam should be performed to
improve the model [9]. The monitoring of the defation of the dam will be
discussed in another communication.

2. Material Models
The material models used for the analyses areigtgsinodels and the elasticity
model. These material models are available in tBA@US [7] materials library
and they can be used with the plane strain contintype elements.

3. Elasticity Model
The elasticity model, either linear elastic or pwelastic model, demonstrates the
ability of the constitutive law to simulate the nlbmearity behavior of materials due
to revertible strains. In this model the lineaat&nship between stress and strain is
the simplest link implying a constant proportiobalibetween general stress
increments and strain increments [10]. The fulk lbetween stresses and strains can
be written as a compliance relationship:

0; =Dy £y

This expression describes Hooke’s Law of elastidftisotropic marerial behaviour
is independent of the direction of the solicitatiamly two independent constants
subsist in the last expression:

0y =A(Q €)-0; +2ue,
K

Where: A and M are lamé’s constants, am‘]ij is the kronecker tensor. The
elasticity model has been implemented numericallkBAQUS 6.4 [7].

4. Drucker Prager Elasto-Plasticity Model
The use of Drucker Prager criterion for soil modellhas been extensively reported
and fully described in literature ([11]). Withinishframework, the Drucker-Prager
yield criterion under plane strain conditions whichve been considered to model
the embankment-foundation system materials.

Drucker-Prager criterion has been successfully tdbpgn analysis of
geomaterials [5]. It is considered as a generatimadf the von Mises criterion for
cohesionless soil, taking into account the firstaimant of stress tensog dnd the
second invariant of deviatoric stress tensotnlprincipal stress space, the criterion

is given as
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F(aij )= 1/Jz(aij ) + aJl(aij )-k=<0
J, represents the trace of stress tefdgr=0, + 0, + 0;), @ and k are

material parameters related to the soil frictioglarand the cohesion aig, o, and
03 being the principal stresses of a stress tensor.

J, :%[(0—1 _02)2+ (Uz _03)2+(03 _01)2]

In the principal stress spa@®,,0,,0,), the failure mechanism is

represented by a cylindrical cone-shape surfacehawmihg as axis (hydrostatic axis)
a straight line of equation:

0,=0,=0,.

e If a = 0 the Drucker-Prager criterion can be reducedoto Mises type
criterion. Therefore, the cylindrical cone shapdaxte becomes a cylinder.

e If a > 0, the plastic strain is associated with andasing of volume, i.e.
dilatancy

» Under plane strain conditions, displacements petigalar to the cross
section are assumed to be zero, the yielding mitematches Mohr Coulomb
criterion
The plastic potential, which controls the soil thlacy, is defined as:

G(o;) =4/J,(0y) + A,(g;) + Constant

Where, [ is a parameter of behaviour law.

If the associative flow rule is adopted, parame®@rsand 5 are equal. The
Drucker-Prager model can be reduced to Von Misps tyiterion by lettingg =
L =0.

The associated elasticity is the Hooke's lineastaldy. The Drucker-Prager
criterion embraces in total 5 parameters: E, rlz,lgﬁ’.

The expression of the criterion leads to the folf@ywemark: in compression
and for the case of sand, friction angles are éichio small values. However, many
experimental results prove the contrary. It is obsi that the Drucker-Prager
criterion does not adapted to the modelling of sand

Generally, a correspondence can be establisheccbptparameters,  and
k of the Drucker- Prager envelope agd{/ and c of the Mohr-Coulomb envelope.

For axis metrical triaxial condition§, = J,) , the correspondence between both
criteria leads to the following relationships (Ch&-F and A. F. Saleeb, (1982)) :
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g= 2sing
J3(3-sing)

_ 2siny
J3(3-siny)

_ 6ccosyg
J33-sing)

Under plane strain conditionsg§ =0, for example), the hypothesis of the

associative flow rule and the correspondence betweiteria leads to the following
relationships [10]:

tgg
\J9+12tg°g
_ tgg
\9+12tg°p
3c

V9 +121g°9

5. Mohr-Coulomb Model
The Mohr Coulomb yield criterion has a long histofyusage in classical soil shear
strength characteristics in terms of the Mohr-Cowocohesion ¢ and frictiom.
This criterion is used for cohesionless soil anddohesive soil at long term [12].
Tresca criterion, which is considered as a padicidase of Mohr- Coulomb
criterion, is used for cohesive soil at short term.
The Mohr-Coulomb criterion is composed of two ghailines in the

Mohr (7, 0) plane wheret andg are the shear and normal stresses on the failure
plane. The mathematical expression of these tvaigstrrlines can be expressed as:

a=

k =

F(o,)=0,-0,-(0,+0;)sing —2ccosp <0

They are inclined of an anglg] regarding the normal stress ax@gith 0,

and 0, being the maximum and minimum principal stressesspectively
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(0l <0, = 03) and c andp] are the angle of friction and the cohesion of the

soil materials, respectively.
Mohr-Coulomb model can be reduced to Tresca typgerian by

lettingg = 0. In principal stress spa(erl, g,, 03), the criteria presented defined

by the function F is a pyramid associated with lgexal cross-section and having
as axis a straight line of equation:

0,=0,=0,

Wheng = 0, this pyramid transforms into a circular cylinder.

The plastic potential can be expressed in ternmimimum and maximum principal
stresses as

C-j.(aij )=0, -0, + (0, +0;)siny +constant

Wherg { is the dilatancy angleFor ( =@ this is corresponds to the

associative flow rule Mohr-Coulomb model involves five parameters, namely
Young's modulus, E, Poisson's ratip the cohesiong, the friction angle, and the
dilatancy angley.

The Drucker-Prager model does not suffer from tle-smooth corner
regions that generally affect Mohr-Coulomb-type | spiodels. A number of
investigators prefer Drucker-Prager plasticity niadige to the relative smoothness
of the yield surface, the corresponding lack ofrgheorners, the ability to model
ductile tensile failure, and the coupling betwekess failure compressive plasticity.

In addition, it is more realistic in that the DreckPrager model predicts a
saturation of soil strength with increasing effeetconfining stresses. However, the
classical Mohr-Coulomb model unrealistically préslicno saturation of shear
strength with increasing effective normal confinsigesses [4].

6. Boundary Conditions of a Free Surface Flow throgh Earth Dam
As the water flows, the soil in the dam undergoelsime changes in response to
changes in total stress. Volume changes can genpoat-water pressures and alter
the transient flow regime within the embankment dd8j. The solution to these
problems requires that soil behaviour be analyzethd¢orporating the effects of the
transient flow of the pore-fluid through the voidsyd therefore requires that a two
phase continuum formulation be available for ponmeslia [14].

A procedure was incorporated in the ABAQUS&mputer program for
performing finite element analysis on the behaviofira dam including water
seepage. ABAQUS has been coded based on a procéthirecouples stress
equilibrium (mechanical behaviour) and water flawdraulic behaviour) using the
Theory of Consolidation for soil layers. Generalfipw of water through both
saturated and unsaturated soil follows Darcy’'s IEM3]. However, boundary
conditions associated with the complexity of doreaiare not specified or
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prescribed, for example free-surface boundary. &foeg, the resolution of the flow

equation is sometimes not straightforward. A wéltew associated with free surface
is characterized by a free surface limiting watlewfto its top boundary. The

seepage through an embankment dam is an examplecohfined flow bounded at

the upper surface by a phreatic surface. The velgibsition of the free surface is an
internal variation of the element to which hydraund mechanical properties
depend on positions of saturated or unsaturateglszoespectively.

7. El Hma Earth Dam
El Hma dam is an embankment dam built across El IRinar located at Morneg
town in the district of Ben Arous, Tunisia. The daontrols a hill slope reservoir of
about 123 krhand receives an annual average discharge of abBuMit’. Its
maximum operating capacity amounts to 12 Mm

The main objectives of the realization of EIl Hmandare to:

* Recharge the Morneg aquifer at the downstreamadfitlee dam;

« Minimize damage caused by flooding and presereedischarge of high
flood seasons (flood control);

« Meet the requirements of irrigation supply to Megrregion, Tunisia (over
760 hectares of land).

The embankment consists of a thick impervious corgervious blanket,
upstream shoulder and downstream shoulder. Thetrootisn materials used for
the embankment are:

* The core consists of brown compacted clay, preteaipstream and
downstream by granular filters. These filters pcbtae core dam and are considered
as transition zones between the core and upstradrdavnstream shoulders.

» Upstream shoulder consists of mixed material (clasown silt and
materials taken from necessary excavations of comglates of unified structure
and from the spillway)

« Downstream shoulder consists of cobbly and clagegvels, and is
considered as permeable. A berm width of abouti§ located at downstream slope,
which may provide additional stability to both tambankment and the foundation.
The berm is covered with a 0.50 m thick rock fédlér lying on a transition layer
having a thickness of about 0.25 m.

¢ Impervious blanket of about 1.50 m thick existerogll the downstream
shoulder in order to protect the foundation agaimstrisk of potential piping.

Average slopes of the dam are made of 1V: 3 H ahd3®5 H upstream and
downstream faces respectively. Figure (1) showsxample of a general schematic
cross-section of EI Hma dam. In table (1), the nthimensions of the Al Hma dam
are summarized.
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Clayey cors

Upstream shoulder - Filter
AX Daovenstraam shouldsr
- o
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[ - J
Sands of the foundation Clayew substratum

Fig. (1). General schematic cross-section of El Hrdam ([15]).

Table (1). EI Hma dam geometry [13].

Dam length (m) 1200
Embankment height from the ground level (m) 26
Embankment width at its base (m) 196
Crest width (m) 6
Core width at the top/bottom (m) 4/5

The reservoir and the foundation area are infillwdh sediments of
Quaternary age. A sandy shallow soil layers arerlyimg an impervious clayey
substratum. The thickness of the sandy layer igingrbetween 13n at the
upstream side andi at downstream side, and mainly consists of sandcabbles
associated with clayey interbedded layers. The eglapubstratum has an
approximate thickness of about 9 m at the upstre@a to about 181 at the
downstream side.

8. Finite Element Analyses
Figure (2) shows the finite element idealizatiomsidered for the embankment-
foundation system. The embankment and foundatids save been discretized into
four nodded-quadrilateral elements. A total of 8&ments and 596 nodes were used.
ABAQUS automatically meshes the geometry accorttirte given element size.

e

Fig. (2). Two-dimensional finite element mesh promed for embankment-foundation system.

Zero vertical and horizontal displacements are ifipdcat the substratum
contact. However, the foundation is free to moveéhim vertical direction and fixed
in horizontal direction at the left and right sidédowever, the coupled hydro-
mechanical model will be limited to the embankmi@ctuding few elements of the
upstream shoulder and the core, and the dam fdondat

In the horizontal direction, the model site waseexted from the dam
surfaces to about 101.5 meters and 50 meters &finarid right sides, respectively.
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Then the total width of the foundation is about .325meters. The dam foundation
was modelled to the depth of 21 meters below thargt level.

At the end of construction of the dam a significpote pressure development
is expected either in the embankment or foundatiaring construction of the
embankment [12]. The embankment is constructecyars with soils at or above
their optimum moisture content that undergo inteeansolidation because of the
weight of the overlying layers. Embankment layeraynbecome saturated during
construction as a result of consolidation of thesta: there is drainage of the water
from the soil during construction resulting in tHevelopment of significant pore
pressures. The end of construction behavior madgel8 analyzed in dry condition.
The shear strength parameters are considered asd bas geomechanical
classification and laboratory testslometer and triaxial cells, performed on a dry
material[16]. Geotechnical parameters of the embankment and &iandmaterials
used for the modelling are summarized in table (2).

Table (2). Geotechnical parameters.

Embankment soil Foundation soil

Parameter  Core Upstream Downstream  Filter ~ Sand and cobbles Clayey

shoulder shoulder with clayey substratum

interbedded
layers

C(kPa) 72 50 0 0 0 70
o) 21 23 48 36 46 19
E(MPa) 17.5 19 80 40 75 17
Vv 0.32 0.3 0.25 0.27 0.23 0.33
Ye 21 23 48 36 46 19
E 0.578 0.525 0.42 0.47 0.44 0.59
K(m/s) 10°  10° 10° 10° 210° 10°

In table (2),¢ is the soil friction angle, c is the cohesion,sEthe Young's
modulus,v is the Poisson’s ratigy is the dilatancy angle, e is the void index, and k
is the permeability.

The analysis during the reservoir filling is perfed considering two effects
associated with pressure of water and wetting. Bt@yancy forces that correspond
to the water level of the reservoir are also actadifior. These forces are evaluated
in the conditions corresponding to the minimum amakimum water levels in the
reservoir. Then the difference between them wasluglly applied to the slope
during a time span coinciding with the average timguired by filling. During the
filling of the reservoir, the values of geotechhiparameters decrease through the
embankment as well as the Young modulus becaube afetting effect [15].

The long-term analysis is performed, under assumgtineither variations
associated to the periodic variations of the I®fehe reservoir nor seismic loading,
are accounted for. The maximum storage reserveiel Iés considered that is
maintained long enough to produce a steady-stapage condition. In the long-
term behavior analysis all materials are considefelty drained (effective)
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associated with wet material conditions. The valolegeotechnical parameters and
elastic parameters (Young modulus and Poison’s)rafithe construction materials
decrease [15].

Subsequently and due to the change of the embankmkme on the dam
foundation, several analyses need to be performeatder to predict the material
behaviours at the embankment-foundation interface.

9. Prediction of Settlement
The finite element analysis is performed to predhet vertical displacement of El
Hma dam at the end of construction, during firspaending and at long term.
Results of analyses illustrating the evolution eftlements at the embankment-
foundation interface for the elastic, Drucker-Pra{#0] and for Mohr-Coulomb
criteria at the end of construction, during firsservoir filling and at long term have
been plotted in figures (3 to 5).

A comparison between different criteria used atehdankment-foundation
interface for the three different states: end ofstauction, during first impounding
and at long term have been depicted in figures @.t

At the end of construction of the dam, the cal@dasettlement underneath
the crest, more precisely at the embankment-foimdainterface, reached
approximately 0.56 m for the elastic model, 0.7@omDrucker-Prager criterion and
1.04 m for Mohr-Coulomb criterion. After impoundinthe calculated settlement
under the crest, especially at the embankment-fationd interface, increases to
reach approximately 0.70 m for the elastic mode800m for Drucker-Prager
criterion and 1.70 m for Mohr-Coulomb criterion. King term, these calculated
settlements continue to increase and reach appabeiyn0.80 m for the elastic
model, 1.30 m for Drucker-Prager criterion and 219€r Mohr-Coulomb criterion.
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Fig. (3). Settlement at the interface embankment-f;dation-Elastic model
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At the end of construction, these calculated getlets under the
embankment are associated with significant swedlirgf the upstream and
downstream toes of the dam. Then, these swellingsredse, due to soil
consolidation, and reach small values at long téomall three criteria at the
upstream toe level of the structure.

The decreasing of vertical displacement at thereast toe of the dam is
caused by the effects of pressure of water andteffewetting. Similar observation
can be demonstrated for the downstream toe of &me tthat at long term the soil
swelling stabilizes. However these displacementsaie more significant compared
to those occurred at the upstream toe of the dam.

The magnitude of settlements is due to the follgidombination:
« the consolidation corresponding to an increasfreffective stresses
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« modifications of effective stresses due to vawiai of volumetric weight
of foundation and embankment soils and variatiohgore pressures associated
with settlements

« the development of significant lateral strains.

10. Prediction of Horizontal Displacements

Distributions of horizontal displacements withinetidam depend strongly on the
consolidation state under the embankment. Horitaigplacement predictions of
the dam and the downstream berm for three critetastic, Drucker-Prager and for
Mohr-Coulomb at the end of construction, duringtfireservoir impounding and at
long term have been plotted in figures (9 to 1\yhen plotting displacement versus
the height, the heterogeneity of materials acrbesdam from the berm level to
foundation layers has been considered.

As can be seen from the figures, these displacesmeatch their maximum
values beneath the downstream berm of the dam badgitionally, the slope
changes once new material is crossed. At long tdronizontal displacements
increase over the time to reach their maximum \salabout 0.62 m for Mohr-
Coulomb criterion, about 0.45 m for Drucker-Pragsterion and about 0.32 m for
elastic criterion.
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Fig. (9). Horizontal displacement of the downstreanshoulder at the end of construction
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Fig. (10). Horizontal displacement of the downstrea shoulder during filling.
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Fig. (11). Horizontal displacement of the downstrea shoulder at long term

11. Prediction of Stress State and Pore Pressure
ABAQUS is also used to conduct effective stresslysim First, the nodal pore
pressures are evaluated through a finite elemespage calculation adopting the
same mesh used also for the stress analyses. thikempdal forces equivalent, in the
finite element sense, to the calculated pore pressare determined and introduced
as external loads in the stress analysis.

The development of pore pressure in the centrak zuinthe core is quite
large comparing with that in the other two sideshef clayey core. Moreover, as can
be seen that the pore pressure increases undepstream and downstream toes of
the dam for Mohr-Coulomb criterion, while under tirest of the dam the maximum
pore pressure is developed for elastic and DruBkager criteria.

Superposed stress diagrams for different critetidoag term have been
plotted in figures (13 to 14). The maximum stresslar the crest of the dam is a
tensile stress for three criteria. Adversely, ie tipstream and downstream toes of
the dam the stresses are not higher. However pitldtbe noted, therefore, that in
Figure (13), the estimated stress from 2D modelhigabout 2.5 MPa under the
middle of the dam is not realistic. The estimatgdss from the three-dimensional
model is of about 9.50 MPa. More investigation, mhathe results from automated
monitoring surveys, should be conducted in ordererify and to enhance the Finite
Element model.

Obviously, in figure 14 the behaviour of the damlaig term is totally
compressive in term of effective stresses. Thiegia realistic idea of the dam
behaviour. The concentration of compressive effectstresses under the crest
reaches about 2.4 MPa for the elastic criteriomgual2.5 MPa for the Mohr-
Coulomb criterion and about 3.6 MPa for the DruBesiger criterion.
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12. Conclusion and Recommendations
The results of two-dimensional numerical modelblvih ABAQUS software and its
constituent models led to results highlighting fetential benefits of using this
approach to predict the behaviour of El Hma eaatimd

El Hma embankment dam was used as a case studyptp and compare
different constitutive models. The behaviour cigethat will be judged the more
suitable is the one that gives the closer defoonatvalues to the observed
deformation. However, more elaborated constitutmedel should be used in
attempting to reach a more realistic final statstofss.

However, he most critical problem encountered inleliog the deformations
is obtain in-situ characteristics of constructiamil snaterial, which is the main
source of uncertainty in modeling the deformatiorfse selection of material model
in order to predict the behaviour of earth struetisr most important when dealing
with finite element modelling.

The long-term prediction of settlement of the El &learth dam, a simple
creep model should be introduced in order to ptdditg-term time-dependent fill
materials behaviour and the evaluation of modeaipaters. For future analysis a
concepts from viscoplasticity and constitutive mothet describes the soil creep
behaviour should be incorporated.

Further research must be devoted to the developneénintegrated
monitoring systems to increase the reliability dfHima dam. The mathematical
modeling of deformations by using finite elementtimoel should be integrated in
the design and analysis of monitoring surveys. [boation of the sensors or the
observed targets must include points where maxirdeformations are expected.
As depicted in Figure 13, the estimated stress f2@hmodelling of about 2.5 MPa
under the middle of the dam is not realistic. Theomated monitoring surveys
should be conducted in the middle of the dam ireotd verify and to enhance the
Finite Element model.
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Abstract. This paper presents and describes an approachefaptimal design of a fuzzy logic stabilizer
to enhance the stability of a superconducting ggoer(SCG) in a multi-machine system. The input
signals to the proposed fuzzy stabilizer are th€ SPeed deviation and acceleration. In this approac
unsymmetrical nonlinear membership functions amdusvhile number of stabilizer parameters to be
properly designed is 15, including scaling factfnsinput and output variables along with widthsian
centers of fuzzy sets of input variables. Partalarm optimization (PSO) technique is employed to
search for optimal settings of the fuzzy stabiliparameters. Simulation results show that the Eegpo
PSO-tuned fuzzy stabilizer provides good dampingS@G in a multi-machine environment when
operating in conjunction with conventional stalgliz on other machines.

Keywords: Fuzzy logic stabilizer, Superconducting generadulti-machine system, Particle swarm
optimization
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1. Introduction

The application of superconductors to electric poagparatus is considered a key
technology for the current century. The electriavppo demand has been steadily
increased worldwide. This tendency will continuetlire future, and therefore the
capacities of the power transmission systems haumctease. Large power systems
require developing a more efficient and stabiliziaghnology for large amounts of
power transmission. One promising method is toothice the superconducting
generator (SCG), which has a very low synchroneastance [1]. Superconducting
generators have also many other potential advastagampared with the
conventional generators such as higher efficiemzyy smaller size and weight. The
advantages of SCG have drawn more interest in fridugsountries since 1970's,
such as in Japan where many R&D projects on SCGe wenducted at utility
companies, power plant manufacturers and othemarggon toward 200-MW class
pilot machine [2-6]. Despite these advantages, $€l@ winding has an extremely
large time constant. The excitation system is floegenot able to change quickly the
field current to meet the grid requirements undengient conditions. Inevitably, the
only control means feasible to enhance SCG stalditowing power system faults
is the fast-acting governors on the steam supfiidise turbine.

Transient stability is one of the most importansuess that should be
investigated in power system planning, operatiomg @&xpansion. It is mainly
concerned with maintaining generator synchroniratfollowing a sudden and
major disturbance or an abrupt change in load oeggion power. The importance
of this issue increases when considering a supdwmtimg generator in a multi-
machine system. In the past, a number of investigathave been conducted to
study and improve the behaviour of a supercondgasnerator in a multi-machine
system [7-8], The results reported in [7] show tiet incorporation of a SCG in a
multi-machine system increases its stability resgbut slightly reduces the overall
damping of the system. However, a good improvemnente performance and
stability limits can be achieved by using a conigrdl lead stabilizer in the
governor loop of the SCG [8]. Alternative stabiligebased on adaptive control
techniques have been proposed [9-11]. However, dmeline parameter
identification is still questionable especially ohg fault periods. Recently, fuzzy
logic control has emerged as one of the most friuittsearch areas, and many
applications for enhancing power system stabilidyeh been reported in literature
[12-13]. A recent literature survey on the work doon the fuzzy logic controller
and the approaches made to enhance its effectvanegiven in the introduction of
Ref. [14]. The fuzzy logic stabilizer is essengalh multi-parameter controller,
whose performance depends on the shape of mempdtstdtions, rule base and
scaling factors. However, the design of a fuzzybifiteer with satisfactory
performance is a rather difficult problem. To owere this problem, genetic
algorithm (GA) was proposed as an efficient techaidor the optimal design of
power system stabilizers [15-16]. More recentlynew heuristic search method
called particle swarm optimizatio(PSO) has been introduced [17-18]. PSO is
characterized as a simple concept, easy to impleraed computationally efficient.
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Theses features make PSO technique able to acebmipie same goal as GA
optimization in a new and faster way. A number ary recent successful
applications of PSO on various power system problérave been reported in
literature [19-21]. Nevertheless, a new optimizatinethod called Biogeography-
Based Optimizatidh(BBO) has been recently introduced [22]. BBO lsasanmon
features with GA and PSO, but also it has differdracteristics that distinguish it
from other population-based optimization techniquéswever, BBC method still
has a long way to go to prove its validity as aficefit, global search technique.
The objective of this paper is to enhance the ktaloif a SCG in a multi-machine
system using fuzzy governor controller optimallgideed by the PSO technique.

2. System under Study
The multi-machine system under consideration issshim Fig. (1). It is a twelve-
bus four-machine power system. The machine at bus & superconducting
generator, while the other three machines are cuioreal generators. The four
generating units are connected to four load arsashawn in the figure. Based on
Park's d-q axis representation, each conventioaghime is modelled by seven non-
linear differential equations [23]. The order of &@nodel is increased to nine to
accommodate the double-screened rotor. Transmidisies are modeled using the
n-method, and the loads are represented by coristaptiances. Each conventional
generator is equipped with a typical excitationteys and a conventional power
system stabilizer (PSS) having the transfer functiy(1+0.15)/(1+0.015%) [24],
whereG; is a gain. The block diagram of the excitationteysis shown in Fig. (2).
In this study, the mechanical input to each corieeal generator is assumed
constant. Meanwhile, a detailed representatiorttierprime mover of the SCG is
used, because it is the main concern of this stlilg. SCG is driven by a three-
stage steam turbine with reheat. The turbine idrobbed by fast acting electro-
hydraulic governors fitted to the main and intetoewalves, which are working in
unison. Mathematical models for SCG, turbine aneegoors, along with the system
parameters are given in the Appendix.
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3. Particle Swarm Optimization
Particle swarm optimization (PSO) models the bedraahd cooperation aspects of
individual members within a social system. In thisdel, the system is populated
with individual particles, referred to as "swarmépresenting possible solutions to
the problem considered. Particles fly around in @tidimensional search space.
During flight, each particle adjusts its positiorcarding to its own experience, and
experience of neighbouring particles, making ustnefbest position encountered by
itself and its neighbours. In PSO algorithm, eadtfon is represented as a patrticle
in a swarm, having a position and velocity. Eackitan coordinate represents a
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parameter value. Thus, for an n-dimensional opttion, each particle has a
position in n-dimensional space that representwisn [18]. The PSO starts with
generation of initial swarm particles, assigningaadom position and a random
velocity for each particle. Then, PSO algorithm leates each particle's fitness
using a predefined fitness (objective) functioneosition with the highest fitness
value in the entire run is referred to as "glokedtiposition” ¢,es). Meanwhile, each
particle keeps track of its highest fithess valliee location of this value is called
"personal best position"pf.s). The algorithm then proceeds by updating the
velocity of each particle using its currentogty and its distance fromyes;and
Prestaccording to the following equation:

kK — k-1 k-1 k-1
Vi = WY (Bhesy =X ) +Colo(Goesi =X ) )
1=1,2,3, .o m
K
i is the velocity of particleat iterationk
k
% is the position of particleat iterationk

ry, r,  are uniformly distributed random numbers in thegeaf0, 1]
C;, &  are positive constants

w is the inertia weight at iteratidn
m is the number of particles in a swarm

As originally developed, large inertia weight isosenmended at initial stages
of the search process to enhance the global exigoravhile lower values of the
inertia weight are preferred at final stages torionp local exploration. The inertia
weight can be decreased either linearly over saggddtions or in a non-linear form
as follows [18]:

wk = gw*? @)
Where o is a decrement constant. Another important paramef PSO
procedure is the maximum velocity,(,) of a particle in any given dimension. This
parameter determines the resolution with whichstbarch space is explored. After
updating the velocities, the position of each p&etis modified according to the
following equation:

X =x " +vf ®)

The algorithm proceeds by updating the best positdd each particle
according to its new position; the global best posiis then updated as well. This
procedure is repeated until a specified terminatiamdition is met.
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4. Fuzzy Logic Stabilizer
In this section, the determination of an efficiewntrol signal,u, based on fuzzy
logic is described. This signal is then introdugad the governor side of the SCG
turbine as shown in Fig. (3).

D/A| Micro-computer|{A/D — @
u
- 1
U
s Ug Governor ij Gm

0

1/ %Droop [¢——— W(p.u.)

Fig. (3). Thegovernor control system

Speed deviationy, and its derivative,tu, are chosen as input variables.
Actual speed is the only signal to be measurednTdaesignal is determined, and
@& signal is computed as:

w(k) = [w(k) —w(k-1)] /T, (4)

whereT; is the sampling interval. Two scaling factdfg,andKg, are used to

map & and &, respectively into their predefined universes istdurse, which are
divided into seven overlapping fuzzy sets; nameditiye large "PL", positive
medium "PM", positive small "PS", zero "ZE", negatismall "NS', negative
medium "NM", and negative large "NL". A non-linednearly bell-shaped)
membership function is assigned for each fuzzysseh that if a crisp input "x"
belongs to a set of range [a-b], width "d" and eeric”, then its degree of

membership/, , in this set is defined by the following function:

@(x-a)/d)?  if asxsc
U, =3 (0b=-x)/d)? ifcsx<b (5)
0 else

Table (1) shows the fuzzy rules that are assignedhe SCG system. Each
entry in Table (1) represents a control rule, whadkes the form: "IFw is A, AND

& is B, THENu is C", where A, B, and C are fuzzy sets as defimgdelation (5).
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These fuzzy rules are individually applied on thezified inputs, resulting in an
output fuzzy set, for each rule, clipped to a degfefined as:

He(U;) = min(u, (@), 4 (&) Q)

The aggregated fuzzy outputs are converted intoghescrisp value using the
"weighted average" defuzzification method, whichegi the output control signal as:

Y 4 )y

u=K,=L— @)

Z)uc (ui)

whereK, is a scaling factomn is the number of rules giving contribution to
the fuzzy output at the sampling instant consideaedy; is the center value of the
fuzzy set in consequerit According to the structure of fuzzy logic stadeli
described above, the number of fuzzy sets, to waichnput value belongs at a time,
depends on how much overlap between adjacent &etzyis.

Table (1). Fuzzy logic control rulesfor SCG system

da/dtNL NM NS ZE PS PM PL

w

NL NS PS PM PM PM PL PL
NM NS NS PS PS PM PM PL
NS NM NS NS PS PS PM PM
ZE NM NM NS ZE PS PM PM
PS NM NM NS NS PS PM PM
PM NL NM NS NS PS PS PS
PL NL NL NM NM NS NS PS

5. PSO-Based Stabilizer Parameters Selection

The tuning parameters of the fuzzy stabilizer KgeKg andK,. Additional twelve
adjustable parameters (six féc fuzzy sets, and six fotu sets) are introduced to
enhance the effectiveness of the proposed fuzbjligex. Namely,d;, th, ds andd,,
which stand for widths of fuzzy sets (LP, MP, SE) of ¢, andC, andC; which
stand for centers of fuzzy sets (MP, SP) respdgti&imilarly, d';, d, d’, dy, C%
andC'3 are assigned fotu fuzzy sets. Therefore, we have now fifteen paramet
(Ka, Kg, Ky, O, &b, G5, A4, G, Cs, dYy, d, d3, dy, C, C%) to be optimally chosen.
This task is achieved using PSO technique. Firgtladratic performance index is
defined as:
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7= Q) ®)

where a(K) is the deviations of the SCG speed from the stestate value.

The problem of designing a fuzzy logic stabilizer then transformed into an
optimization problem, where PSO is utilized offdinto select the stabilizer
parameters. The proposed stabilizer was design#tedbads and operating points
of case #1 shown in Table (5). However, like maegursive and stochastic
methods, PSO itself has a number of parameters fdperly specified. The main
PSO parameters are the initial inertia weight, and the maximum allowable
velocity, Vinax The initial inertia weight is set at 1, aNg., at 12.5% of the search
space of each variable. The swarm size of PSOdserhto be 60 particles. Other
parameters are set as decrement congteh®8, andt;= c,=2.

6. Simulation Results

In this study, the SCG exciter voltage and the raeial input to all conventional
generators were kept constant during transient® dptimization process was
carried out in response to a three-phase to gréauwitlof 200-ms duration at bus 5
at the end of line 5-10. Variation of the perform@rindexJ with the number of
iterations is shown in Fig. (4), which indicateatti converges to 20.2 after 120
iterations. The performance indek was recalculated when the conventional
stabilizer is installed with the SCG instead of thezy stabilizer. In this case, it was
found J =21.1, which is less than that with the proposerzy stabilizer. The
optimal fuzzy stabilizer parameters selected by P86 K,=0.584, Kz=0.358,

K.,=1.616. The optimized fuzzy sets foct and & have taken the shapes shown in
Fig. (5).

21.6

~
o]
8 2124
£
8 208 |
S |
E -
5 20.4—\;
IS, —_——
a
20.0 ; ; ; ; ‘ ‘

0 20 40 60 80 100 120 140
Iterations

-------- with linear and symmetrical functions
with non-linear & unsymmetrical functions

Fig. (4). Convergence of performance index with different designs
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Fig. (5). Optimized fuzzy sets of wand daJdt

Since there is no infinite-bus, machine 4 was takera reference unit. The
rotor angles of the other machines are shown végipect to that of the reference
unit. The multi-machine system performance wasinbthat three situations. First,
when the four generators are not equipped withilstais. Second, when each
conventional generator is equipped with a conveafid®’SS, while the SCG is
stabilized via a governor lead stabilizer [8]. Thias in second, but the governor
lead stabilizer is replaced with the governor fuatgbilizer designed above. The
SCG performance is shown in Fig. (6), Fig. (7), &ig. (8). These figures also
show the performance of other machines in the Byskqg. (9) shows the system
response to the same fault, but with loads andabiper points given under case #2
in Table (5) in the Appendix. The simulation resuhow that the incorporation of
the proposed PSO-based fuzzy stabilizer in the mavdoop of the SCG leads to a
significant improvement in the SCG performance andappreciable increase in
damping of the rotor oscillations with a reductionthe rotor first swing. This can
clearly be noticed from Figs. (6a), (6c) and Fig. Fig. (10) shows that the fuzzy
stabilizer damps well the SCG oscillations whensitings against the other
machines in the system. This gives an indicati@t the proposed stabilizer is able
to damp multimode oscillations in the system ursiedy.
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Fig. (6-a). System responseto SC at operating point #1, all machines without stabilizer

80

—— M/C1
—~ 60 1 —-— M/C2
5]
T 40
(3]
D 20
@
g 0
S
T .20
-40 T T T T T

Time (s)

Fig. (6-b). System response to SC at operating point #1, conventional machines with PSS and SCG
with lead stabilizer
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Fig. (6-c). System response to SC at operating point #1, conventional machines with PSS and SCG
with fuzzy logic stabilizer
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Fig. (8). System responseto SC for 200 ms at oper ating point #1
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7. Conclusion

This paper has proposed an approach for the designfuzzy logic stabilizer for

transient performance improvement of a supercomtiygenerator (SCG) operating
in a multi-machine system. A set of fuzzy decisiales relating the SCG status, in
terms of its speed deviation and acceleration,hto dontrol action required was
assigned based on previous experience with coatrdéisign. A performance index
was defined, and then PSO technique was used iminpta set of unknown

stabilizer parameters at the specified loads. Tdsilts of non-linear simulation
study show the effectiveness of the proposed P®@&dtiuzzy stabilizer in damping
the rotor oscillations and therefore enhancing38& stability.
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9. Appendix

The mathematical model of SCG [16]:

p
Y
23
w
o

H
Tm
T

Po
Y
T

PY s =a Vs —i¢R¢]

PYy =W [Vy +yR, +¢ ]+ ¢

PYpy = —G,in Ry,
PYp, = —G,ip,Rp,

pl/jq = ao[\/q + IqRa _I/Id] _l//da“

PPy = —CinRy

PWqs = ~W,ig, Ry,

po =
aO
2H

Te :‘//diq _l//qid

pw = [To =Tl

. derivative operator
. flux linkage
. synchronous speed (rad/s)

. rotor speed deviation from synchronspeed (rad/s)
. rotor angle with respect to infinite bus

: inertia constant
: mechanical torque

he mathematical model of the turbine and govesystem [16, 26]:

PYye = (GuP, = Yo )/ Tip
PYern = (Yup = Yen) / Try
PYp = (G Yy — Y )/ T
PYie = (Y = Y1)/ T1p

Ton=Fup Yup + Fip Yip + Fip Yip

PG :(Ug -Gy )/ Tgy
PG, :(Ug_GI)/TGI

. boiler steam pressure
. output of a turbine or reheat stage
. time constant of stage
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(25)
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Gum, G : main and interceptor valve positions

F . fractional contribution of the turbine stageaiitt,

Uy . governor actuating signal

The definitions of variables and parameters noingefin the paper can be found in
references [8, 25].

Parameters of SCG (M/C #3), turbine and governastesys (inductance and
resistance values in p.u; time constants in segonds

Lf: 0541 Ld:Lq: 05435, LD]_:LQ]_: 02567, LD2:LQ2: 04225,
Lfd:LfDl:LdD1:LdD2:LD1D2: 0237, LfD2: 03898, Lqu:LqQZZLQlQ2:0-237x Tf:750,
Rd:Rq: 0.003,RD1:RQ1:0.01008,RD2:Rszo.00134,H:3 S ,Tem=Tg| :0.1,THP =0.1,
wre=10,1p=1,p=0.3, P,= 1.2 p.u, F4p=0.26,Fp = 0.42,F = 0.32

Table (2). Parameter s of conventional generators

Parameter symbol M/C #1 M/C #2 M/C #4

La (p.u) 211 2.13 0.898

Ly (p.w) 2.02 2.07 0.646

Mar=Mdp=

Meo  (p.U) 1.955 1.88 0.658

Mgo (p.u) 1.865 1.82 0.406

Le (p.u) 2.089 212 0.724

Lo (p.u) 2.07 197 0.668

Lo (p.u) 1.93 1.88 0.457

Ra (p.u) 0.0046 0.0029 0.0014

Re (p.u) 0.00013 0.00092 0.00026

Ro  (p.u) 0.02 0.018 0.012

Ro  (p.u) 0.024 0.0212 0.02

H (s) 2.32 2.52 5.15
Table (3). Parameter s of excitation systemsand PSS

Parameter M/C1 M/C 2 M/C 4

Symbol

Ka 200 4 200

Ta (s) 0.3575 0.02 0.02

T (s) 1.0 0.05 1.0

K¢ 0.0529 0.05 .01

E min (p-U) -5.73 0.0 0.0

B max(p-U) 5.73 4.46 7.32

Gs 0.03 0.03 0.04
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Table (4). Parameters of transmission linesin p.u

38

Bus# R jX iY
1-7 0.0 0.12 0.0
7-8 0.009 0.152 0.0688
8-9 0.088 0.1055 0.0982
9-2 0.0 0.12 0.0
9-6 0.009 0.152 0.0688
6-10 0.009 0.152 0.0688
10-3 0.0 0.12 0.0
10-5 0.0088 0.1055 0.0982
7-5 0.009 0.152 0.0688
5-11 0.009 0.152 0.0688
11-4 0.0 0.12 0.0
11-12 0.018 0.304 0.0344
Table (5). Loads and oper ating points
P+jQ (p.u)
Case #1 Case#2
Load 1 -0.5 -j0.309 -0.8-j0.48
Load 2 -0.3 -j0.155 -0.3-0.18
Load 3 -0.25-j0.155 -0.3-0.18
Load 4 -0.25-j0.155 -0.3-0.18
M/C 1 0.12 +j0.058 0.2237+j0.14
M/C 2 0.2 +j0.04 0.5 +0.111
M/C 4 0.235+j 0.154 0.235 +j0.2587
SCG 0.75 +0.11 0.75 +j0.2037
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Abstract. This paper presents a complete analysis of an fimfugenerator linked to the power network
through an ac voltage controller aiming to contt@ generated active and reactive power at differen
speeds. The ac voltage controller uses three éliffecontrol strategies, namely; the firing angtbe
extinction angle- and the symmetrical angle- cdrétmtegies to control the generator terminalaggt
The generator electrical and mechanical performamegacteristics regarding the harmonic distortion
factors, active power, reactive power, power facsteady torque, pulsating torques and efficierayeh
been computed at different speeds. These chastitterhave been determined with the help of novel
equivalent circuits in the frequency domain. Thegaivalent circuits enable accurate calculatiothef
generator performance characteristics as the noatedchniques are omitted. Also, unlike the dgd an
the abc models, the present model takes into atto@menerator iron losses effects.

Keyword: induction generator, ac voltage controller, grid-connected
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1. Introduction
Wind is a promising source of renewable energyhanworld. This power may be
utilized to generate electrical power using theuottbn generators [1-2].

The performance of a grid-connected induction gatioerusing a solid state
ac voltage controller as an interface between tleand the stator terminals of the
generator is studied in this paper. In this regarfbrced-commutated ac voltage
controller which utilizes a set of IGBT devices leen used.

Many authors have analyzed the self excited indaagenerators [3-8] which
are utilized in far and isolated sites. The perfanoe of controlled generators using
ac voltage controllers has been analyzed in pravipublications for naturally
commutated voltage controllers, and forced comredtabltage controllers [9-11].
The analysis has been determined using numerichhigues based upon abc-dq
reference frame models. In the present paper tbadgtstate electrical and
mechanical performance of the generator has bealyzau through modeling the
induction generator and the static converter byehaaquivalent circuits in the
frequency domain. This is expected to give moreuete results, and enables the
iron losses to be taken into consideration whic$eto accurate estimation of the
generator efficiency.

Computer programs have been developed to deterthi@eperformance
characteristics of the controlled generator foridewrange of operating conditions
and specified switching strategies of the ac veltagntroller. In this regard, the
firing angle, the extinction angle and the symneairiangle control strategies have
been used. The computed performance characteristicsled the generator current
and its distortion factors, the generator active eractive powers and the generator
efficiency. Also, the bus current, its distortioacfors, reflected harmonics on the
supply, the displacement angle, the bus activeraadtive powers, and the power
factor has been computed. On the other side thehanémal performance
characteristics regarding the unidirectional-depetb torque and the pulsating
components appearing as a result of the use cd¢heoltage controller have been
determined.

2. Solid State Control of the Induction Generator

Forced commutated AC voltage controller is suggestebe used as an interface
between the grid and the induction generator. Ttepgsed circuit is shown in
Fig.(1). Each stator phase has control circuit t@ttains series and shunt IGBT
devices in bridges of diodes to allow the currenpaéss in the two directions [9].
The two IGBT's are operated alternatively, when gbges transistor is turned on,
the shunt IGBT is turned off and vice versa. Thasteol circuit links the induction
generator with the network. The terminal voltagenadl as the active and reactive
power of the generator can be controlled by vanatf the on and off periods of the
series transistors. The shunt transistor bridgenalithe clamped current in the stator
phase during the off state of the series bridgeortinue flowing as freewheeling
path.
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The transistorized AC voltage controller may be toated using three
different control strategies as follows [9]:

3 phase bus bar

L]

Fig. (1). Induction generator connected to grid via ac voltage controller

a) Firing angle control:

The control of the generator terminal voltage ineldy varying the firing
angle (), while the extinction angles) is kept at 180 degree as shown in Fig. (2-a).
b) Extinction angle control:

The control is carried out by the variation of #inction angle ff), while
the firing angle ¢) is kept constant and equal to zero as showngn(Eib).
¢) Symmetrical angle control:

The control is done by varying both the firing angihd the extinction angle
simultaneously (Fig. 2-c). The conduction anglei¢ given by;y =p —a, andp ==
—a.

The terminal voltages of the induction generateras follows:
Va= Vp Sinot m+oa<ot<nz+p ,n=012,. Q)
Vp, and v lag behind yby 2#/3 and 4r/3 respectively.
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Fig. (2-c). Symmetrical angle

Fig. (2-a). Firing angl Fig. (2-b). Extinction angl
ig. (2-a). Firing angle ig. (2-). Extinction angle control strategy

control strategy control strategy

3. Steady State M odeling
3.1 Frequency Domain Equivalent Circuits
The stator terminal voltage of the induction Getmravhen using an ac voltage
controller is no more a pure sinusoidal voltagant$-ourier series this voltage can
be analyzed into a summation of a series of fundémheroltage and higher order
voltage harmonics. Let, the bus voltagg; \be :

Vpb(8) = Vi, Sind ;6 = ot (2)
Then, the generator terminal voltagg, i given by
Vg(0) = SF0)-Vub 3)

Where SHf) is a switching function that is fully determinadcording to the control
technique such that, in the case of firing angletrab technique

SFP)= 1 m+o<0<(n+ly;n=0,1,2, (4

Otherwise it is zero.
In the case of extinction angle control,

SFE) = 1 m<0<m+p;n=0,1,2,.. (5

Otherwise it is zero.
In the case of symmetrical angle control

SFE) = 1 (N+0.5) — 0.5/ <0 < (N+0.5)1 + 0.5;,n=0,1,2,. (6)

To get the Fourier series of the voltage, Bk analyzed using Fourier series rules.
Thus,

SF(0)=a,+), c,sin(at+4,) ™
where n is an even number. Then,
Vo(0)= Vi sitd {@, + " c,sin(Nat +4,)} 8)

which yields the following equation:
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Ve(t) =D, Visinthat +¢,) ©)

where h is an odd number,, \and ¢, are given for the three control
techniques in Appendix A.The generator appliedaggt components, obtained by
Fourier series, are classified as follows:

a) Positive Sequence Voltage Components:

Components of order nf = 1 + 6k; where k = 0, 13,2..., are called positive
sequence voltages. These voltages generate rofatkgs in the same direction of
rotation of the flux produced by the fundamentdtage. The slip w.r.t the flux of
any positive sequence voltage is:

:nf x N, - N, (10)
nf x N

where N is the nominal synchronous speed, andsithe rotor speed.

b) Negative Sequence Voltage Components:

Components of order nb =5 + 6k; where k = 0, 1, .2,are called negative
sequence voltages. These voltages generate rofatkgs in the opposite direction
of rotation of the flux produced by the fundamentatage. The slip w.r.t the flux of
any negative sequence voltage is:

SP

_nbxN_+N, (11)
nb x N

¢) Zer o Sequence Voltage Components:

Components of order no = 3 + 6k; where k = 0, 13,2,.., are called zero
sequence or triplex voltages. The net flux of thieaemonic components in the air
gap is zero. Therefore, they neither contributetii® torque output nor induce
currents in the rotor.

The positive and negative sequence equivalentitsraf the slip ring and
plain cage induction machines are as shown in @g). In the case of delta
connected generator or four wire star generataresysthe zero sequence voltage
drives zero sequence currents in the stator. Q) 6hows the zero sequence
equivalent circuit which applies in this case flrcmnstruction types of induction
generators.

3.2 Generator Current, Power and Torque Calculations

For each voltage component (of order h) the apptgequivalent circuit is
used to calculate the corresponding stator, magjngtand rotor currents. Also, the
power factor is obtained. Then, the terminal actied reactive- electrical power,
rotor air gap power and the induced torque areuztied as follows:

Sy

Pen= Vhln COSfon —wgn) p-U (12)

Qeh = Viln Sin@n —ygn) p-U (13)

Pon = I RS, p.u (14)
Ten=Pp/h  p.u, for +ve voltage (15-a)

Ten=Pjp/h  p.u, for-ve voltage (15-b)
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Whereq, is the phase angle of th® kioltage component; Vy;, is the phase
angle of the # current component;,l and § is the slip w.r.t the flux of the'h

voltage component.
JIZ2=17
THD =YL (16)

Ry hX,J R./S hXzJ

Vh R, hXJ

|

(a) Positive and negative sequence equivalent circuits

Ry hX,J
— A ———— T

Vh

(b) Zero sequence equivalent circuit of the induction machine

Fig. (3). The generator equivalent circuits (S= Spin the case of +ve sequence harmonicsand S= Sy
in the case of -ve sequence harmonics).

THD defines the total harmonic content [12], buddes not indicate the level
of each harmonic component. If a filter is usedhat output of the converters, the
higher-order harmonics would be attenuated mowxcgffely. Therefore, knowledge
of both the frequency and the magnitude of eachmbaic is important. The
distortion factor (D.F) indicates the amount of ttemonics distortion that remains
in a particular waveform after the harmonics oft thaveform have been subjected
to a second order attenuation (i.e. divided By Mhus, D.F [12] is a measure of
effectiveness in reducing unwanted harmonics withhawving to specify the values
of the second order load filter and is defined1&y [
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1 Ly
D.F = T{h-zm(hhzj } (17)
D.Fn = |1|.rh1 2
The total terminal active- and reactive- electripaiver are calculated by
R=> P (18)
Q.= Qu (19)

Interaction between the fluxes that rotate at dififé speeds results in pulsating
torques. The steady and pulsating torque comporeatsalculated in p.u using the
following formulas [13]:

T = XD D Uty oty SIN(KSE —Krf )t + @) =, r)) (20-2)
To = szkszkr(ls(ksb)lr(krb) sin((ksb —krb)at + Wy =W, gory) (20-D)
Te = szkszkr(ls(ksb)l oty SIN(KSO + Krf)aat + )+, (o)) (20-0)

T = xmzkszkr(ls(ksf)lr(krb)Sin((ka +Kb)at + W) + Wy avy) (20-d)

Te=Ter— Teo+ Tez— Tea (21)

Where ksf, krf are the stator and rotor harmonidees which induce forward
rotating magnetic fields and ksb, krb are the statwl rotor harmonic orders which
induce backward rotating magnetic fields. The stestdte torques result when ksf =
krf in Te;and when ksb = krb ing}.
3.3 Bus Current and Power Calculations

At any instant the instantaneous bus powgg; equals the instantaneous
generator power;gthus,

Pg = Pob (22)

Vg ig = Vbbibb (23)
Using Egs. 3 and 23, leads to

= ig SF@) (24)

ig has components calculated from the equivalentuit&ccorresponding to the
voltage components and S¥has its Fourier Series form. Thus, the bus ctrign
could be expressed as a summation of current coemp®as given in Appendix A.
The active- and reactive- electrical powers areutated, keeping in mind that the
bus voltage is pure sinusoidal, as follows:

Pe = Vp lob1 €OS (-Wob1) (25)
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Qe = Vb lbb1 SiN (-Wbb1) (26)

The angle between the fundamental bus currggt; rheasured in the output sense
and the bus voltage, called the displacement gigagle), is calculated as follows:

DANgle =ypp1 + 7, 27)
The bus power factor is calculated from [12]
PF = PuF . DF (28)

Where PuF is the purity factor and is given by; BulI
The bus current total distortion factor and theivitial distortion factors are
calculated using the formula applied to the gereratrrent (Egs. 16, 17).

4. Performance Char acteristics of the Controlled Generator

A simulation program based upon the steady stasgfency domain) equivalent
circuits, with the terminal voltage representedaaseries of a fundamental voltage
and higher harmonic voltages has been develope@ fEhminal voltage is
determined using Fourier series analysis (Apperdy) which gives the voltage
components for the three control strategies. Tlgnam has been used to compute
the performance characteristics of the generateingahe data given in Appendix
B. Various performance characteristics of the gatoersuch as the fundamental
current, total current, various distortion factdree active power, the reactive power,
the efficiency and the generator average torquepaghting torque components of
the generator have been computed versus the geneged at different firing,
extinction and conduction angles. Fig. (4) compates generator current third
harmonic distortion factor for the three contralagégies. The results show that
these components are very similar for the differenitrol cases. This is also the
case of the total harmonic distortion of the getweraurrent (Fig.5). Consequently,
the efficiency of the generator (Fig.6) is mordess the same for the three control
strategies. The bus current distortion factors tf@ three control strategies are
shown in Figs. (6 and 7). These figures indichtg the extinction angle control
strategy gives the least harmonic distortion factompared with the other
strategies. The extinction angle control strategy & much less bus distortion factor
compared with the generator harmonic factor, wttie bus distortion factors are
higher than the generator factors for the othergtrategies.

The displacement angle is clearly affected by fie=d and the control angle of
the control strategies. This angle has a high fepdalue when the speed is very close
to the synchronous speed, then as the speed iasrt@®es down before it begins to
increase again. In the case of firing angle cortiraltegy, the displacement angle goes
in the lagging direction as the firing angle inges (Fig. 9-a)

The induced steady torques for the three contrateggies is shown in Fig.
(10). The & and 13" order pulsating torques are shown in Figs (11 &2)d These
are given as a ratio of the induced steady torgjbe.pulsating torques ratio seem to
be high at the speeds which are very close toythehsonous speed, then decreases
rapidly as the speed increases. As expected, #tis behaves in a fluctuating
manner as the control angle f§ ory) increases.
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(c) Symmetrical angle control

Fig. (4). Distortion factor of thethird order generator harmonic current
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Fig. (5). Total harmonic distortion factor of the generator current
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Fig. (6). Efficiency of the generator
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Fig. (7). Distortion factor of the third order bus har monic current
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Fig. (8). Total harmonic distortion factor of the buscurrent
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Fig. (9). Displacement angle of the bus current
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Fig.(10). Total average induced torque
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Fig. (11). The 8" order pulsating torque
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5. Conclusions

The steady-state electrical and mechanical perfocmaof a forced-controlled

induction generator has been analyzed through rimgg#dle induction generator and
the static converter by novel equivalent circuitshie frequency domain. Simulating
programs have been developed to determine therpeafae characteristics of the
controlled generator for a wide range of operatiogditions and different switching

strategies. In this regard, three control strategiethe ac voltage controller have
been used, namely; the firing angle control strateéle extinction angle control

strategy and the symmetrical angle control strategy

When using the ac voltage controllers, the active @eactive powers of the
grid connected induction generator can be conttollehe bus reactive power is
clearly controlled when using the firing angle cohtstrategy to the extent that it
becomes positive over certain ranges of firing endlhis means that the output
current lags the voltage. Consequently, the reaqgtiower will be delivered to the
network by the induction generator.

Using the solid state electronic switches to cdntine active and reactive
power of the induction generator is associated wiik existence of current
harmonic contents in the generator and harmonicents reflected on the supply.
Only the odd harmonics especially the third harrosrexist extensively. If our
concern is to have reduced generator harmonic ottee symmetrical control is
recommended. But, if low bus harmonics and consgtubetter power quality are
required the symmetrical control should be avoiddte symmetrical angle control
strategy results in the highest distorted bus otrre
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8. Appendices
Appendix A: Fourier Series of the Generator Voltage and Bus Current
A.1- Generator Voltage
Vg = Vi sin@). F ©)
where F @) is the switching function which is determined aating to the control
strategy as follows:
SFP)= 1 o <0<mm+p; n=0,1,2 .

Otherwise it is zero.
Using Fourier series analysis of the switching fimt; the generator voltage can be
expressed as follows:
Vg = 0.5V, [(8-&) Sin@) + (a-as) sin(B) + (a-as) SiN(BP) + (&-ag) SiN(M) +.......

+ b, cosP) + (by-by) cos(P) + (bs-b,) cos(B) + (bs-bg) cos(B) +....... ]
Thus, the fundamental componeny; ¥ 0.5V, (a-a&) sin@) + 0.5V, (b,) cos@),
3 harmonic componentgy= 0.5V, (&- a) sin(3B) + 0.5V, (s-b,) cos(B),
5" harmonic componentgy= 0.5V, (a- &) sin(B) + 0.5Vy, (bs-bs) cos(B),
and so on.
a0, & and b are given, for the three control strategies, des:
a0, & and h are given, for the three control strategies, des:
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i) Firing angle controal,

& = 2(rea)/m
a, = [(-2 (2n-1)g ] xsin(2n-1)x n=123,....
b, = cos(2m-1)/nrt, n=123,...
ii) Extinction angle control,
3 = BIn
a, = sin(2rB)/(n), n=12g3,....
b, = [1- cos(2B)]/(nT) , n=12.3,...
iii) Symmetrical angle contral,
3 = 2yIm
a, = [{-2(-1)"-2} sin(nfTy)/2)]/nt , n=1,23,...
b,=0 , n=123,...
A.2- BusCurrent
ibb = ig SF@)

The fundamental bus current is given by
ibb1 = {0.5 Iz ((20-8p) COSfygr)+b sinfygr)) + 0.5 ks ((8e-a) COSfygs) + (bu-by)
Sin(ygs)) + 0.5 ks ((au-@e) COSfygs)+(De-by) sinfygs)) + 0.5 7 ((8-3) COSfyq7) +
(be-bs) SinGygn)) +....}xsin@) +{0.5 Ly (b COS{rgy) + (ar+a) sinfygy) + 0.5 ks
((baby) COS{yg) + (ar+as) sinfygs)) + 0.5 s (bs+ba) COSrgs) + (artas) sinfygs) +

0.5 b7 ((bstbe) COSfygr) + (a+ae) SiNfygr)) +....}xCoSE)
3 harmonic bus current is given by

ibbs = {0.5 lg1 ((&-au) cOsfyqr) + (u+by) sinfygr)) + 0.5 |3 ((20-26) COSfyga) + bs
Sin(y ) + 0.5 ks ((@-a) COS{ gg) + (B-by) Siny g9) +....}xsin (B) + 05 J
((ar-a0) cOSfy g7) + (buo-bs) SNy g7)) +{0.5 lg1 ((ba-by) COSfy g1) + (22+a4) SIN(y 1))
+0.5 ks (bs cosfy g3) + (a+as) Siny g3)) + 0.5 bs ((betby) cosfy gs) + (+a) sinfy
g5) + 0.5 b7 (;uotha) cosfy g7) + (artauo) sinfy g7)) +....}xcos(I)
5™ harmonic bus current is given by

ipbs= {0.5 ly1 ((84-36) COSY g1)+(s+h4) Sinfy ¢1)) + 0.5 3 ((2e-3e) COSy ¢3) + ()
SiN(y g3)) + 0.5 s ((8-a10) COSY g5)*+buo SiNfy gg)) +....}xSIN(B) + 0.5 7 ((a-
au12) COS{y g7) + (biz-by) SiNy 7)) +{0.5 1 ((be-bs) COS(y g1) + (autae) Sinfy g1)) +
0.5 3 ((bs-b,) cosfy ¢3) + (a+ae) sinfy g3)) + 0.5 s (b1 COSfy ¢5) + (ay+aug) sinfy

65)) + 0.5 L7 ((biz+by) cOsy ¢7) + (@+a2) Siny ¢7)) +....}xCos(BH)

where }; ,lgz,lgs lg7 ... are the generator harmonic currents.

a, & and h are as given before.

Appendix B: Generator Particularsand Parameters

Three phase generatof connected, 600 V, 475 A, 50 Hz, having the follogvin

parameters:

R; =R, =0.015 p.u, X=X,=0.091p.u, %= 4.251 p.u, R=30.0 p.u.
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Abstract: A knowledge of the product distribution from ther@lysis of coal when particles are heated is
of considerable importance in understanding thegs® involved in both the production of gaseous and
liquid fuels from coal and the combustion of c&tudies of decomposition of Sinai coal and combusti
rates have been undertaken because the rate amt ektvolatilization play an important part in the
ignition process of coal particles in circulatidgidized bed. There is a little information avail&in the
literature on the rate of decomposition occurrinder the very rapid heating characteristics of iStnal
firing. This is due to incomplete knowledge abolié tphenomenon of combustion of Sinai coal in
circulating fluidized involved in special care ogions. That is why this work is continued to brimgw
technical solutions and sake knowledge in this eeopre profound.

Keywords: Pyrolysis, combustion, solid fuel
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1. Introduction
The combustion of most solid fuels involves two onajteps:

(i) The thermal decomposition (pyrolysis, devolatiianj that occurs
during the initial heating, accompanied by draglitysical and chemical changes
which usually involve the particle become plastiert rehardening, and

(i) The subsequent combustion of pores solid residhardrom the first
step. The burning rate of the solid depends in-paithe size of char particle and the
natural of its pore structure. These physical prdgge together with important
chemical properties, are affected by changes duhiedfirst step. The first step is
rapid, the second is slow. In pulverized flamestthee for devolatilization to take
place is of the order of 0.1s and for char burrt.4he time is 1s; for particles
burning in fluidized bed combustors the correspogdirders are 10s and 1000 s.
Therefore the burning of the char has a major éffat the volume of the
combustion chamber required to attain a given fedasse.

Actually, when necessity of burning low grade fudias arisen, there is a
demand to find adequate technologies to burn thf#ectevely and with as low
emission of pollutants as possible. Circulatingidized bed may provide the
solution. The gas/solid mixing and heat transferpprties of fluidized beds have
been utilized in combustion systems for burning Igrade coal, but it that the
advantages have been appreciated of the high haasfér rates occurring at
surfaces immersed within the bed. Sufficient heatektracted in this way to

maintain the temperature of the bed in the averz@@®800°0C. The high heat
transfer rates which result in high combustionnsttes and a reduction the weight
of expensive tube materials-leading to a substasti@ing in the capital cost of
steam generation.

Prospecting for coal in Egypt, can be consideredata from early in 1844,
when a well near Edfu (Southern Egypt) shown sootination of bituminous
carbonaceous material.  Further prospecting fdr caried out in 1958-1962
resulted in the discovery of the coal deposits gui Musa, Wadi Thorn and
Maghara in Sinai Peninsula. The Safa mine was apand 964 and was about to
start production in 1967, when it was then abandahee to Israeli invasion. It is
planned to resume production in April 1986. A dall-tender is now being issued
for studding the possibility of erecting a coakfirpower plant on the Gulf of Suez
(initial) capacity 300 MW, to be followed by otheoal fired power stations.

2. Pyrolysis of Coal Particles

Prior studies in which finely-ground coal was heatery rapidly have shown that
the fraction of the coal that can be volatilizedreases with both the rate of heating
and the final temperature to which the coal is é@aForexample, Eddingegt al
[1], have presented data from an entrained flowctmrawhich show that volatile
products amounting to 49.9 percent of the coalnfiey be produced from a finely-
ground coal having an AS'IM volatility of only 35percent, even though maximum
reactor temperature was less than the 1223 K rddnlt@e standard volatility test.
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Mustafa et al [2] studied the effect of particle size on coakgysis by
thermogravimetry (TG/DTG). All the experiments wemdnducted at non-
isothermal heating conditions with a heating r&td@C min™. in the temperature
range of 20—60%C, under nitrogen atmosphere. Different fractioh§ayirhan coal
showed differences in TG/DTG curves, peak tempesatand residue values. The
Arrhenius model is applied to determine the kingimrameters from TG/DTG
curves.

Kinetic analysis of rapid coal devolatilization anspot heater apparatus was
made for Tatong coal by [3]. A multiple-stage measytechnique was devised to
provide the change of total volatiles with time/fmmature during the
devolatilization. On the basis of the analyses [t total volatiles yield and
measured temperature of coal particle, the kingtarameters of the rapid
devolatilization for Tatong coal were estimateddpplying Distributed Activation
Energy Model (DAEM).

A poly-generation process of simulated circulatifhgidized bed (CFB)
combustion combined with coal pyrolysis was devetbjin a laboratory scale by
[4]. Pyrolysis characteristics of three bituminawgals with high volatile contents
were investigated in a fixed bed with capacity 0fkl solid samples. The effects of
initial temperature of solid heat carrier, pyrol/$iolding time, blending (ash/coal)
ratio and coal particle size on gas and tar yieldse studied experimentally. The
results indicate that the initial temperature o tieat carrier is the key factor that
affects the gas and tar yield, and the gas compositlost of the gas and the tar are
released during the first few minutes of the pysidyholding time. For caking coal,
the amount of char agglomerating on the pyrolyzarer wall is reduced by
enhancing the blending ratio. The experimental Itesmay provide basic
engineering data or information for the processigtesof CFB combustion
combined with coal pyrolysis in a large scale.

An experimental apparatus was set up for batchlaon of coal pyrolysis
with solid heat carrier in a fixed bed. by [5] Qzasand as heat carrier preheated to
about 700-800°C was mixed with Datong bituminousalday an agitator. The
thermal history of the coal particle has been fedd by a K-type thermocouple.
The effects of particle size, pyrolysis time anthperature on the gas yield during
pyrolysis of coal with solid heat carrier were exaed for different conditions. The
experimental results showed that a dominant peagentf the gas product is
produced during the first 1-3 min, although gasl@i@n would last for as long as
10 min. The total gas yield, insensitive to paetisize of the heat carrier, depends on
carrier temperature and coal particle size undgteteconditions. The contact heat
transfer of cold and hot particles was analyzed.

The authors of the works [6, 7, and 8] observettibating the coal particles
at the rate higher than 10000 K/s substantialljuerfces the quantity of evolutes
volatile matters. Rapid heating results in greapeantity of volatile products of
pyrolysis than slow heating does. Another featuffergntiating pyrolysis in high
rate of heating from slow heating is qualitativelifferent composition of evoluted
gaseous products [10].
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Complex processes occurring during thermal decoitippsof coal are not
well known or quantitatively described. Model aliogy for more than one reaction
are presented in work [6, 7, 8, and 9]. Referefficeand 8] propose that pyrolysis
may be described by two parallel reactions. Théerewf pyrolysis models [6, 7, 8,
and 9] of volatile matters evolution is presentedhibles (1).

Table (1). Review of Pyrolysis models

Author Model Commentary
Badzioch and Hawksley v . K: constant rate of chemical reaction
[6] o =k(V -V)
Kobayshiet al. [7] Coal— xVv. +R (1- V:gas
Ubkayakaret al [8] WVt R E-x) R; solid phase
Coal= XV, + R, (1-X%,)
Solomon [9] av, _ K (V' -V V': emitted quantity of volatile
ar (V -V) matters (% daf)

Pyrolysis converts coal into volatile products awdid residue. The rate of
volatile evolution may be controlled by either cliesmh decomposition of the coal or
gaseous flow through the solid matrix Knowledgetlwé kinetics of pyrolysis is
required for under standing the combustion of quaticles. Volatile evolution is
known to influence the combustion of solid particend the influence of pre-
ignition volatile generation on flame speed. [1118)

The report has determined the degree of devokatitin of SINAI coal in the range
of temperature from 923 K to 1323 K for particlamieter from 25@m to 750um,
ignition temperature, and reactivity.

2.1. Coal size

A high percentage of coal mined today is by medt&rdoal cutters; in most
countries the days of pick- and shoved mining disaped, and mechanical
conveying, cleaning and screening the coal is nadely adopted. As a result, there
is a much smaller amount of large coal available generally coal is much cleaner
with less dirt and ash. In stoker fired boilersicgiae is important. Although large
coal is usually the most expensive, it is not thestruitable for use in mechanical
stokers. Most large coal suppliers grade their odala range of sizes in which both
the minimum and maximum particle sizes are stigalaFor example, British coal
grade their bituminous and anthracite coal intaugsoas shown in Table (2). Other
industrial countries have their own systems fossifying coal by average particle
size, and use their own descriptive names for #nous grades.
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Table (2). British coal grade of bituminous and arftracite coal

Bituminous coal grading Typical size groups for grded low, volatile coal
Range of screen sizes Welsh anthracite Welsh dryestm coal
Description Max, Min. Description Mm Description mm

mm mm
Large Cobbles 150 75 Cobbles 125-80 Cobbles 125-80
Cobbles 100-150 50-100 French nuts 80-63 Large nuts 80-56
Trebles/large 63-100 38-63  Stoves nuts 63-36 Small 56-18
nuts Stoves 36-2--16  Nuts 18-16
Doubles/nuts 38-63 25-38 Beans 20-10 Beans 18-10
Singles 25-38 12.5-18 Peas 16-10 Peas 10-0

Grains 10.5 Washed duff.

Washed duff. 5-0

2.2. Coal analysis

SINAI coal was the raw material used for pyrolyssearch. The analysis
was listed in Table (3) and Table (4). The coal we=heated, milled and divided
into groups of particles of diameters by sievinghe range from 25Qm to 750um.
The samples for proximate and ultimate analysisewearried out according to
obligatory Polish Standards. The content of canvas determined in the examined
samples by means of Radmacher—Hoverth method.

Table (3). Analysis of SINAI coal

Proximate Analysis ( dry ash free % by weight )
Moisture Ash Volatile matter. Fixed Carbon
2.9 13.7 54.45 8.95

Table (4). Analysis of SINAI coal

Ultimate Analysis (dry ash free % by weight )
Carbon Hydrogen Sulphur Nitrogen Oxygen (by difffeoe)
76 6.6 2.96 1.13 13.31

2.3 Test-rig and measurements

Investigations were carried out on the test-riglemwn in Fig. 1 [19and 20].
Basic elements of the test rig are: vertical resctihamber, coal supplying sampler
extinguishing system of pyrolysis products, insiidin of reaction chamber electric
heating and gas heater, water cooling system, Igasand temperature measuring
system, system for carrying away pyrolysis produ&sring the operation, the
reactor walls and gas heater temperature is mehsvith six thermocouples. The
quantity of gas supplied to the reactor and thedeand that leaving the reactor is
measured by rotameters. As well, the power of hgatppliances is measured. Solid
and fluid pyrolysis is carried away from the reactbrough the installation
comprising successively: cyclone, bag filter andtism pump. All measurements
probes were calibrated at various conditions intéisé section.
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Fig. (1). The reactor system
2.4 Research range
The Experiment was based on continuous transporpul¥erized coal
particles by a carrier gas (Nitrogen) to the reafiteed with in active atmosphere

where they are rapidly heate]jQ3 deg/sEI.C5 deg/s). The particles flowed through
the reactor in 2s-4s. The products were suckeddurto the cooling stage. The
furnace temperature was controlled from 923 K ta3LK in 100 deg intervals. The
flow of carrier gas was changed from 0.0005 to 2306ubic meters per second in
relation to the furnace temperature. The quantitgupplied coal amounted to ca
0.00017 kg/s.
2.5. Degree of devolatilization

The degree of devolatilization of coal can be esped by the number Q
which is the ratio of the actual coal mass lossesed by rapid pyrolysigy daf to
the change in quantity of volatile matter deterrdirie standard conditions, i.e.

Avdaf [19 and 20]
Q= — = )

To obtain the value of “Q” the parameteyy daf and pydaf have been determined
as given below:

The examination of devolatilization in dust-gaeatn renders it impossible
to measure directly coal; mass loss caused by #iledecomposition. Coal mass
loss results from the fact that not all particleaah the collector as some of then get
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stuck to the reactor surface. Thus, to determieeatttual loss of mass requires the
use of ash determined according to chemical arglygsl the actual mass loss is
calculated from the equations;

100ad, 100-A4
mdaf =100- (ARG @
100A AC

The quantity of volatile matter when left in chdiea coal devolatilizatior(vgaf)
can be estimated from the formula;

c 100 -Ad Ad
The change of quantity of volatile matter which wateased from coal can be
determined by the following equation;

Avdaf = Vdaf_vgaf (4)

®3)

The values ofamdaf and avdaf obtained through experiments have been
presented in Figs. 2 and 3. From these figuresrithe said that;

- with the rise in pyrolysis temperature therendrarease in the quantity of emitted
matter and the mass loss,

- for fraction of diameters 600m -750um there is a sudden increase in the values
of amdaf and avdaf up to pyrolysis temperature of 1323 K. Beyond this
temperature the increase is very slow.

The calculated values of degree of devolatilizattbeoal obtained are given
in Table (5). From this table Q is found to varyveen 1.2-1.5. Considering the
small range of variation and the trend of curvefigs. (2 and 3) it can be inferred
that the particle size practically does not affdut degree of devolatilization.
Devolatilization rate is reduced since a larger|qoarticle results in a higher
inherent temperature gradient. In addition, a lacgal particle size results in a
higher mass transfer resistance for volatile gakngyer path of the volatile inside a
larger particle delays the time for volatile releaSmaller coal particles favor the
gas and the tar yields.

Table (5). The degree of devolatilization (Q)
Temp., K Particle diameters,um
250-350u m 350-450u m 450-550u m 550-650pu m 650-750u m

Q Q Q Q Q
923K 14 1.23 13 14 13
1023 K 1.4 1.25 1.2 1.43 15
1123 K 1.31 1.24 1.26 13 0.8
1223 K 13 1.20 1.3 22 13

1323 K 14 1.20 1.2 1.3 15




7C Bahgat K. Morsy

70
— 5 d =250-350 mm
£ 60F [
.g 3504 2 . d=450-550mm
g 5 Oi;d_/*/*/j
E i_ o 4 =550-650 mm
&® 40 ;/D/u/‘
F 4 =650-750 mm
2 30f < ~
s _ | x
o 20F
> Tt
2 10 d = particle diameteym
© L
O n n n n 1 n n n n 1 n n n n 1 n n n n
923 1023 1123 1223 1323

Pyrolysis temperature, K

Fig. (2). Measured variation in change of volatilenatter various with pyrolysis temperature.
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Fig. (3). Measured variation in change of coal madess various with pyrolysis temperature.

3. Ignition Temperature of Coal Particles
The test rig where ignition temperature and char&ttc burning times were
determined is illustrated in Fig. (4) [21]. A siegioal particle was put on the top of
a fine quartz needle and introduced into a cylealrfurnace of 0.5 m length and a
diameter of 0.04 m, the air inside being statice Tgnition of particle was watched
through an observation port. In the absence ofignthe particle was taken out and
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a fresh sample was introduced after raising thendte temperature. The
experimental was repeated until the ignition ocetir(T S) The lowest temperature,

at which the ignition took place, was regardedggdtion temperature. The furnace
temperature was changed by five degree centigriaelech step. At one temperature,
on the average, 200 particles were tested

Transformer

Vv
|| | (I
Thermocouple Water intlet TV
iy wiviviplylely. viviylulyl | Aplylviylylvlvlylylly = © 0 oo
= K]
Furnace Ei
o )
P Toleteteteteieleialulutoto oot ottt tvin ool o e2e? ] Camera

Water outlet

Fig. (4). View of experimental test - rig.

Figure (5) presents experimentally determined changn ignition
temperature with particle diameter for tested ch@te results are presented only
for the particle diameters below 49@m. The figure shows that the ignition
temperature with particle diameter for tested ch@te results are presented only
for the particle diameters below 49@m. The figure shows that the ignition
temperature increases as the particle diametereaees. Also the ignition
temperature increases with the increase in py®ly@inperature. Thus determined
ignition temperature is the basis for determinihg values of kinetic parameters
which, in turn form the basis for determining cheactivity.
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Fig. (5). Ignition temperature as a function of paticle diameter for various pyrolysis Temperature.

4. Reactivity of Coal Particles
Reactivity is influenced by many chemical and pbgkifactors characteristic for
fuel, e.g.: crystalline structure, presence of maheubstance and trace elements,
specific surface of pores, capacity of open popewosity etc. Coal reactivity
changes together with its devolatilization and deise on the conditions of
pyrolysis, such as: rate of heating, temperatucedamation of pyrolysis, type of gas
and type of coal.
Solid fuel reactivity is mathematically defined the formula [21]:

qg= K (G, )M [Kg/m?s] (5)

Where: K=the intrinsic rate constar‘rt(g/mZS]; or [m/s];

C=local concentration of oxidizer fraction, and nire true reaction order.
The rate constant is usually related to tempesatby Arrehenius
expression:

E
K=kyExp (- —5—=) (6)
R.T
g s
Where:
k = frequency factor [m/s]; E = activation energy [KJ/mol];

R - gas constant [KJ/mol.K] and Tq = Particle temperature [K].

<




Pyrolysis and Combustion Rates of Solid Fuel 73

The method of determining kinetic parameters onbidms of experimentally
measured ignition temperatures was applied in thport. The relation between
ignition temperature and kinetic parameters under donditions of ignition was
derived as given below and is presented in thevioilg [21]:

2T AR —
0 (Goaroaeararg ) =t (Exkg) - (=) @
273*0.375e*Q*d 0 Rg Tg
Where::
T - Ignition temperature  K; d = coal particle diameter (m);

}\ Q = heat of combustion (KJ/Kg.)
= coal thermal conductivity t (KJ/m.K)

and

1
From the above expression it is seen that the ewntdgnt variable is given by:fﬁ)
g

2T AR
9 9 ) so, the above

273*0.375e*Q*d
expression can be plotted to determine kineticrpatars (E 8k0).

and the dependent variable is given lgy,(

Figure (6) shows the plot to determiriecp and (E). The activation energy

(E) is calculated from the slopei) and the reaction rate constarko() is
R

obtained from the intercept. The r%sults also &r@ws in Table (6). The Table
shows that the pyrolysis temperature increase @8H3causes insignificant char
reactivity decrease as compared to the reactivityraav coal. Considerable
difference in reactivity of chars and raw coal iserved for the char obtained at 923
K. Slight decrease in char reactivity together with temperature results due to the
development of porous structure and short periqohdiicles presence in the reactor.

Table (6). Kinetic parameter values and char reactiity of Sinai coal obtained in various pyrolysis
temperatures.

Sample Pyrolysis Temp. K Activation Frequency Char, Reactivity,
Energy ,KJ/mol Factor, m/s 2
Kg/ m©.s
Coal 293 55.0 74 0.020
char 923 115.8 4.4x16 0.101
char 1023 61.41 1.2x1¢ 0.020
char 1123 72.3 6.6x10 0.030
char 1223 72.7 3.5x1¢ 0.014

char 1323 68.5 1.3x1G 0.010




74 Bahgat K. Morsy
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Fig. (6). Determination of kinetics' parameters forvarious pyrolysis temperatures.

5. Combustion Rates of Sinai Coal at Different Oxygn Concentrations
The Semenov analysis shows that the critical carditor thermal ignition
requires that the values of heat generatid@R() and the heat Ioss,QL), are

equal, as are the derivatives of those rates wihect to temperature [22], i.e.

Qr=QL ®
s ©
dT daT

The kinetics is assumed to follow the Arrehenius, laith a reaction of the
apparent order, n, in oxygen. For circumstancesghich the solid temperatureTé)

differs little from the gas temperaturé[é), i.e. (I'S-Tg) << (Tg), the Arrehenius

expression can be simplified by the substitution:
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E E

E
= Exp( - Exp( ——=(T.-T
gs g9 gg
The solution of equation (8), (9) and (10) for ehesfical fuel particle,
considered to be internally isothermal with an\emsible n the order reaction, is

given in form:

(10)

Exp(- R

2R )\ (T )2.75+n
Ln( g g

27186“[3* *d* o 75)=Ln (E*ko)_ (RE*TL) )

) Q*d*(27P,, J' *(298f g g

The intrinsic reactivity, which is defined as tleaction rate per unit surface area of
pore surface in the absence of any mass trans$&ict®ns. The intrinsic kinetic
parameters may be obtained directly from the erpemially determined ignition
conditions, using the theory of porous particletign follows from the theory, is in
the form of::

RACTMOS (1 )%

12
n (o ——* = )=tn (Erk)?)- GE+ L) (D
CT€*68.3Q*d*(27fp02 ) 2 *(298))'75 g g

Using experimental data the known left hand sideadations (11) or (12) can be

1
plotted against,—{_—) and hence (E) and(%) determined.
g

In the report analysis of ignition data it is assanthat COZ) is the product

of reaction, that carbon consumption prior to igmitis negligible, that heat transfer
by radiation can be neglected, that in ignitionditian the Arrehenius expression
can be simplified by the Frank-Kamenestkii appradion and that ignition of coal
particles takes place on a solid surface.
5.1. Ignition Temperature

The influence of the oxygen concentration, (C) tlea ignition temperature,
(Tg), is shown in Fig. (7). The increasing oxygen @ortcation raises the oxidation

rate and lowers the ignition temperatures of tivemgimaterial.
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Fig. (7). Ignition temperature of Sinai coal as aunction of oxygen concentration.

5.2. Observed (apparent) kinetic

The data in Fig. (7) have been used in equatioptfilgive the results shown
in Arrehenius form in Fig. (8), assuming n=1. TMadues of (E) for Sinai coal =87
kJ/mol is at the level found for the reaction ofpume carbon with oxygen when
pore diffusion and chemical reactions together @nihe burning rate.

At least squares regression analysis of the ignitlata gave the rate of

combustion M), (kilograms of carbon burnt per second per squaeter of the
external particle area) related t'ﬁqo and oxygen concentration (C) by:

- 273C
m=1020.3— 2 )Exp( 8 (13)

After conversation to a common oxygen concentratibd00 % volume the
computed values of are shown in Arrehenius fortRiin 9.

3.75
-
(Tg)

2.718C*3 *Q*d *(2730g, ) *(298)™

Ln(

)
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Fig. (9). Dependence of apparent reaction ratd\1) on temperature for Sinai coal.

77



78 Bahgat K. Morsy

5. 3. Chemical (intrinsic) reactivity

Figure (10) illustrates the Arrehenius plot for tigmition data calculated
according to equation (12). The application of astesquares regression analysis to
the ignition data corrected for pore diffusion diedl the following expression for the

chemical rate, , llograms of carbon urnt per second per wmetero the
hemical rate, I, ), ( kil f carbon b d f th

total surface area ) related fﬁq() and oxygen concentration ( C) by :

- 273C
_ 2 153.
m, =8125.2(———= )Exp(-——— (13)
| #8125 2 )Exp(- )
S gs
The true activation energy =153.1 kJ is about twheeenergy determined for
the zone reaction by global model = 78 kJ/mol.

Coal diameter = 11gm

Intrinsic reactivity, kg/squre m. s (1E-4)

10 11 12 13 14 15

104 1
=

g -

Fig. (10). Dependence of chemical reaction raten(lt ) on temperature for Sinai coal.

6. Conclusions
The above reported work can be summarized in th@afimg conclusions:
1. The degree of devolatilization of Sinai coatemperature 1323 K is found
virtually not to be affected by change in its peletidiameter.
2. In the temperature range 923-1323 K reactivitglgained chars decreased
only 1.2 times in relation to the initial coal ré&aity.
3. For particles diameter smaller than 508, the pyrolysis temperature range
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1223-1323 K, also proved very useful for char redgt Char reactivity
in this temperature range does not differ much fitbm reactivity of raw
coal and it is the highest compared with the chaltained in other
pyrolysis temperatures.

Chars leave the area of pyrolysis displayingtdmeperature 1123-1223 K
which is much higher than the temperature of igniti

The pre-exponential factor and activation enéngghe Arrehenius relation
for the rate of reaction of coal with oxygen haweb determined using an
ignition technique and taking advantage of poreaucstire properes.
Indications are that the apparent activation energs8.0 kJ/mol and the
true activation energy = 153.1 kJ/mol.
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Abstract. The proposed software is an advanced computatiyugulic software tool specially adapted
for the design, and management of pressurizedatiag networks. The hydraulic solver uses specific
strategies and incorporates several new features ithprove the algorithms for pipe networks
computation. These networks consist of a pumpigiost, main and secondary flow paths, valves,
hydrants, and ancillary equipments. The softwaneukites hydraulically the flow in the pipe lines by
computing the different nodes’ pressure. It exeulgs throughout converting gis maps digitallyoint
pipe lines, valves, and main pumping station. lapplied on the iip (i.e., irrigation improved peof)
which is one of the national irrigation developmemjects in egypt. There is no commercial program
produces all these targets because iip has itsspeaific design criteria such as discharge, waigy,
and different sets of pumping units. Total econoaspects including pump station and the networkspar
together with their constituents are computed @mstruction contracts according to the requiremenht
the egyptian irrigation ministry's specificationeaaccomplished. It has been tested, calibrated and
approved on some developed mesgas comparing mandi@plemented results. The efficiency of some
algorithms has been estimated using computatiehetry rules.

Keyword: hydraulics, gis, mesqa design criteria, vbasicoaitpm efficiency.
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1. Introduction
Reviewing the literature over the past five to years, there is indeed a substantial
increase in the number of computer programs wéter-imodels. A number of
packages are available that allow simulation modelbe constructed for water
criteria specific requirements. Popular package<lude EPANET (US
Environmental Protection Agency) [1], Infoworks (Wagford software [2], and
SynerGEE (Advantica) [3]. The design of distribatioetworks using these software
packages has developed from trial and error toemecently, the use of various
forms of optimization, including genetic algorith(e.g. Dandy et al., [4]).
Bhattacharya et al. [5] proposed an ANN (ArtificiNeural Network) with
reinforcement learning which could learn to repkcghe optimal control strategy
(based on capturing operator experience). Rao afmh®ns [6] developed a GA
(Genetic Algorithm) and an ANN model for capturittge knowledge base of an
EPANET model and consequently producing a neanatsolution.

This paper presents a software to simulate thesprized pipe system. The
software may be as simple pipe carrying water foma reservoir through network
to one valve, or it may be very complex with mamgeiconnected pipes that
distribute the flow throughout a large pipe netvgor@ur software can model pipe
networks and calculate the flow and pressure througa system with different
pipe sizes and pipe materials, supply and disch&agk, pumps, valves, flow
controls, system demands and other component. ipeéine system is modeled by
drawing the join points and the connecting pipesaodrawing pane. Horizontal,
vertical or sloping lines can be used to connea oonde to another node. The
optimum design is fulfilled throughout dividing thadesign process into its main
categories and precisely defining each categorygti®@e 3 provides criteria for
design of water distribution systems, while sectfbgives the proposed program
calibration utilities including a handout solvedaexple on these criteria. Section 5
gives more sophisticated pictures of the proposétivare results, while section 6
concludes and suggests the future work of thismpape

2. Softwar e Overview

The program will allow user to draw a complex pipelsystem and analyze the
features of the system when flow is occurring.altualates the balanced steady flow
and pressure conditions of the system. In additiomill allow user to perform
analysis of alternate systems under various opgratbnditions. The physical data
describing the system is entered by the user guidaljy includes:

» The internal size, internal roughness and lengtach pipe.

* The elevation of each pipe join point (node) arel ti-flow and the Out-
flow at each join point.

» The elevation, liquid level and surface pressuta éar the main tank.

The reported results include: flow rates for eaigie ppressures at each node;
HGL (hydraulic grade line) values; pump operatingings and NPSH (i.e., Net
Positive Suction Head) at pump inlet. Total ecormraspects including pump
station and the network parts together with th@instituents are computed too.



A Developed Softwae For an Improved... 85

Construction contracts according to the requiresesft the Egyptian irrigation
ministry's specification are accomplished.

In the other hand, under IIP (i.e., Irrigation Immped Project), hydraulic
design of improved branch canals has been carnigdusing a version of Mott
MacDonald’s in-house simulation model, which wagd@glly customized at the
start of the project in 1996/97 to meet the spec#uirements of 1IP. This version
of the model runs under DOS, which is not now add on most computers. In
1993, Delft Hydraulics introduced a new unsteadyvfl simulation software
package, SOBEK [7]. It includes a link to MATLAB slmat control decisions can be
made within that framework. Water levels are paseddATLAB and gate position
changes are passed back to SOBEK. The controlnesutire written as MATLAB
files. Recently, canal control studies have beenduoted with the SOBEK-
MATLAB combination by Delft Hydraulics.

Actually, the design staff of IIP (i.e., Irrigatiormproved Project) was
suffering from a big problem, which is the diffitylto abstract the maximum water
levels at the different studied point in the saraach. We present here a simple
program to abstract these values in easy way. Tdie purpose is simplifying the
way in which the design staff defines the maximuratex levels. We added a
subroutine to the present software, which helpsuer to abstract the water levels
and save them as an excel file.

3. Criteria of the Design of Water Distribution Systems
For the IlIP-area, the design criteria, which asgpeeted during the development of
the software are as the followings:

* Rice (maximum crop water requirement) could be grow 100% of the
mesga command area.

* Maximum number of pumping units to be 3-units pemp house.

* Mesgas will be designed using PVC pipes 4 bar pressiting.

* The minimum pipe diameter used for mesqa pipeliédhe 200 mm.

* In case of using a stand, the pipeline will be pted with an open air vent
at the end of each branch.

* In case of using direct connection, the pipelind té provided with an
air/vacuum valve on the pump delivery manifold angressure relief valve at the
end of the pipeline.

* The maximum water velocity in the pipeline shoutd exceed 1.50 m/sec,

* The head loss through the mesqga pipeline networto ibe determined
according to the following empirical formula:

V2 A
H, =(c, +n K +ngc,)—f—+329-F +H, +H

+ Min Valve Head(1)
29 29

marwa
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where:c;, is the head loss coefficient at mesqga pipelinetjol, = 0.50,K is
the head loss coefficient at Tee connection, sele tdo. (1), ny is the number of
the Tee along mesqa pipelirg, is the head loss coefficient in bendg,= 0.90;
ng is the number of the bends along mesqa pipelipés the average water velocity

in the mesga pipelineVk is the average velocity in the riser (m/set);; is the

friction head loss, it is computed using William#da's equation,
H, = (359/C,)*%(Q,"*/D,*")L @

where: Q,, is the discharge (ffsec),Dp is the pipe diameter (m}, is the
pipeline length (m), an€, is Hazen friction Coef., 150 and 140 for PVC and PE
respectivelyH ... is the operating head at the marwa off take rafrges 1.5 to

2.0 m [used for case of neglecting the marwa dudiegjgn stage].

Table (1). Head loss coefficient due to the Tee connection with valves

Diameter of the pipeline (mm) K

200 to 250 0.28
300 to 400 0.26
450 to 600 0.24

4. Calibration of the Proposed Software
4.1. Practical calibration:

The developed software is calibrated using a sintybe of networks. It
simulates the pressurized flow in a simple netwdtrkncludes a single path only,
see Fig. (1). Itis necessary to mention thaténsmaginary network.

4.1.1. Design example:
4.1.1.1. Given:

A parcel of land of about 43F has a main canaljrappstation, and 5 valves.
All needed data for design are presented as tauliattable (2).

_MAF 12F < 12F m
(ﬂ h . v Hioes, 4 v
MAIN CPNAL I/s
el ..
Diainm
5 150 50 75 . 95
: ' e 20 .
¥ 0.225 = 0.200

& v bl

Fig. (1). The pressurized flow in a simple network.

Table (2). Designed datafor the simple network
Km 0 0.005 0.155 0.205 0.28 0.375
Land level 254 241 241 243 2.37 261
land level for marwa 2.33 2.33 2.31 2.35 2.42
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4.1.1.2. Required:
The main targets of the design are including bgibrating head (m), and
Stand total height (m).
4.1.1.3. Manual solution:
» Max. Discharge = 0.84*43 = 36.12 1/:10 I/s.
» Max no of valves working in certain time = 2 valves
V.2 V.
- H, =(c, +n K +ngCy )2+ 329+ H, +H, . +0.6+f
29 29
tank >6.0 take 0.2 into account)
= (0.5 + n x0.28 +0.9 x1) Vf2g +3.29(\k)/2g +(3.59/150 )-852 x
(Ql 852/D4 8%
x L + 0.6 +(if tank >6.0 take Gri2o account)
= (0.5+ 2 x 0.28 + 0.9 x 1) (1.68g +3.29(1.8)/2g +( 3.59/ 150)
1852 x( o 041 83 0.216f ®Yx 280 +(3.59/150 %% x ((0.02}%7(0.192f #Hx
95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)
* Hi0)=0.1186 +0.1676 +1.2511+0.2086+1.5+0.6= 3.84616m
* Hi(0.005)= (0.5+ 2 x 0.28 + 0.9 x 1) (1.G%g +3.29(1.6)/2g +( 3.59/ 150)
182 x( 0. 041 852/( 0.216% ®)x 275 + (3.59/150 )"%2 x ((0.02)*°9(0.192} #)x
95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)
* Hi(0.005y= 0.1186 +0.1676 +1.228+0.2086+1.5+0.6= 3.826m
* Hiis5= (0.5+ 2 x 0.28 + 0.9 x 1) (1.08g +3.29(1.6)/2g +( 3.59/ 150)
182y 0. 04 852/( 0.216% #x 125 + (3.59/150 )*? x ((0.02}*°%(0.192} *)x
95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)
4 HL(O 155)= 0.1186 +0.1676 +0.558+0.2086+1.5+0.6= 3.15m
* Hi0205=(0.5+2x0.28 + 0.9 x1) (1. GMg +3.29(1.6)/2g +( 3.59/ 150)
1852y ( 0. 0d 852/( 0.216% #)x 75+ (3.59/150 }**?x ((0.02}%°9(0.192f *)x 95+1.5
+ 0.6 +(if tank >6.0 take 0.2 into account)
* Hy(0.205y= 0.1186 +0.1676 +0.335+0.2086+1.5+0.6= 2.92
* Hi.280= ((0.5+ 2 x 0.28 + 0.9 x 1) (1.0¢3g +3.29(1.6)/2¢+(3.59/150 )
182y ((0. 02)1 85%/(o 192% #4x 95+1.5 + 0.6 +(if tank >6.0 take 0.2 into account)
* Hy(0.280)= 0.1186 +0.1676 +0.2086+1.5+0.6= 2.59
* Hioa7s)- (0.5+ 2 x 0.28 + 0.9 x 1) (1.093g +3.29(1.6)/2¢+1.5 + 0.6 +(if
tank >6.0 take 0.2 into account)
4 H|_(0_375): 0.1186 +0.1676 +1.5+0.6= 2.38
Finally, the hydraulic calculation can be tabulaiedhe following table (3)
and figure (4).
« Stand total height = 3.8461 + 0.75+0.4+.25= 5.2461
e Stand Top level = 5.2461 + 1.09= 6.386
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Table (3). Manual design operating head for the different nodesin the simple network

Km 0 0.005 0.155 0.205 0.280 0.375
Land level 254 241 241 243 2.37 261
Op. head (m) 3.84 3.82 3.15 2.92 2.59 2.38

4.1.2. Solution of the simple network using the proposed softwar e:

The simple network is modeled using the proposétivace in three steps as
following:

1- Input the data of the design including area seilwedhe pump station;
the land level the pump station; and the necessefigition of the network.

2- Digitizing the network path as shown in Fig. (2And checking the
input date for the path itself, see Fig. (2B), and.

3- Presenting the output data including the designtlier path and pump
sets and both operating head (m), and Stand teighh(m), see Fig. (3).

It can be noticed that, the out screen of the sovincluding the all design
data for the flow paths and network see, Fig. {3ha left hand side. In addition, the
hydraulic gradient line and all graphs for the dasid path are presented in the same
figure. The output of the software can be listefodiswing:

 Stand height (m)=5.270;

* Q (I/s)=40;

* Mesqa Length (m)= 364.3;

* Length per fed.(m)= 15.839;

e Pump Cat. = Categ. 2 cover (5.0 to 8.5 m); and

» Pump sets (i.e., the formulation of the pumps): pumps of 20(lit/s)

4.1.3. Analysis of practical calibration:

Figure (4) shows a comparison between the hydrgudidient line calculated
with the developed software and that calculatedualiy for the studied network. It
can be seen that the hydraulic gradient line catedl from the software is higher
than that calculated manually by about 18cm, sep(4i The calculated stand
height using the proposed software is nearly idahtwith that calculated by the
manual procedure. The difference was about 13.1 Tie. statistics' measures,
which are R2 and correlation factor, are used tasuee the ability of the developed
software as a tool to calculate the hydraulic gradiline through the studied
network. B and correlation factor are 0.978 and 0.989, rdamdg. Using
statistical analysis principles, and based on lotideled and calculated values of
the hydraulic gradient line, it was found that tleveloped software is well verified
and an accurate tool to the hydraulic gradient &leng the studied network. The
accuracy was more than 97%.



A Developed Softwae For an Improved... 89

HYDPL V,5.0

Pump Station

51393
5 180 G0 7% H
2hd 241 241 243 237 iR

200 2000 200

(b)

Fig. (2). Theinputs screen shots of the software; (a) the digitizing form (b) digitized data.
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Fig. (3). The outputs screen shot of the software for the ssmple network.

7.0 7 —£1 = Hyd.G.[Model]
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I s - - N
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s ]
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]
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= ]
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a 4
[ ]
2 10
Q L
- ]

0.0 T T T T

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Mesqa Chainage (km)
Fig. (4). Calculated and modelled hydraulic gradient line through the studied network.

4.2. Theoretical Calibration

4.2.1. The Efficiency of some algorithmsincluded:

The algorithm efficiency can be measured eitherthy time it takes to run a
program or by the space the program takes up inanefB]. We will focus on an
algorithm’s efficiency with respect to time. How d@ compare the time efficiency
of two algorithms that solve the same problem? @pgroach: implement the two
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algorithms in Visual Basic (VB) and run the progseam. this presents some
difficulties:

i) How are the algorithms coded?

If algorithm A runs faster than algorithm B, it Wibbviously give one
algorithm an advantage. Hence, we would be comgaiihe algorithms’
implementations, rather than the algorithms thewesel We should not compare
implementations, because they are sensitive t@rfscsuch as programming style,
that tend to cloud the issue of which algorithrintgerently more efficient.

i) What computer speed should we use?

If one computer is faster than the other, it whvimusly give one algorithm
an advantage. Hence, both algorithms should bemithe same computer.

iii) What computer type should we use?

The type of computer is also more important. Thei@aar operations that
the algorithms require can cause A to run fastantB on one computer while the
opposite is true on another computer. Hence, wet rnbes able to compare
efficiencies independent of a particular computer.

iv) What data should the program use?

There is always the danger of selecting data satswhich one of the
algorithms runs uncharacteristically fast (or slofxample: sequential search vs.
binary search when search item is the first elerirettte array. Hence, we must be
able to compare efficiencies independent of a @aer data set. To overcome these
difficulties, computer scientists employ mathenstidechniques that analyze
algorithms independent of specific implementatiawnputers, and data [9, 10]. An
algorithm’s efficiency is related to the numberoplerations it requires. If a function
contains no loops, its efficiency is simply a fuantof the number of instructions it
contains. In other words, the more instructions ftirction contains, the longer it
will take to execute. That being said, with curreotmputer speeds on the order of 3
GHz, it doesn’'t make much of a difference if ouognam has 10 instructions or
1000 instructions ... we really won't notice a diface. However, when we are
dealing with functions that loop, the problem beesmon-trivial. The study of
algorithm efficiency therefore focuses on loops.

We typically discuss an algorithm’s efficiency aiiaction of the number of
elements to be processed. For example, if we vwadétermine the efficiency of an
array-sorting algorithm, we express the efficientyhe algorithm as a function of
the number of elements of the arrayThe general format is: f (n) = efficiency.

Let us start with a simple loop. We want to knoswhmany times the body
of the loop is executed

In the following code:

i=1
loop (i<=1000)
(loop body)
i=i+1l

end loop
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The answer is 1000 times. The number of iteratismtrectly proportional to
the loop factor, 1000.

Hence, the larger the loop factor, the more loemtions we will complete.
Because the efficiency is directly proportional ttte number of iterations, its
efficiency can be represented as: f(n) = n. Howetler answer is not always as
straightforward as it was in the previous examgter example, consider the
following loop:

i=1

loop (i <= 1000)
(loop body)
i=i+2

end loop

In this case, the body of the loop is executedti@8s — half the value of the
loop factor. Once again, however, the larger thapléactor, the more loops we
execute. The efficiency of this loop is therefore:

f(n) = n/2. If you were to plot either of these foefficiencies, you would get
a straight line. Hence, they all callégear loops

In our previous examples, our control variable wasemented by either 1 or
2 each time through the loop. Now consider a lgopfiich the controlling variable
is multiplied or divided in each loop.

Multiply Loops
i=1
loop (i < 1000)
(loop body)
i=i*2
end loop
Divide Loops
i = 1000
loop (i>=1) (loop body)
i=i/2
end loop

How many times are the loop bodies executed inatheve code sections?
See table (4).

As we can see, the number of loop iterations ignliioth cases. Note that in
each iteration the value of i doubles for the npljtioop and is cut in half for the
divide loop. Thus, the number of iterations of thep is a function of the multiplier
or divisor, in this case, 2. That is, the loop amnes while the Condition shown
below is true: o
multiply: 2"*™""S< 1000, divide: 1000 /'Pons>= 1
Generalizing the analysis, we can say that theieffcy of loops that multiply or
divide by 2 is determined by the following formula: f(n) = logn.

For linear logarithmic loops, the following coddle considered:
i=1
loop (i <= 10)
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j=1
loop (j <=10)
(loop body)
j=j*2
end loop
i=i+1
end loop

Table (4). Logarithmic loops.

Multiply Loop Divide Loop
Iteration | Value of i | Iteration | Value of i
1 1 1 1000
2 2 2 500
3 4 3 250
4 8 4 125
5 16 5 62
6 32 6 31
7 64 7 15
8 128 8 7
9 256 9 3
10 512 10 1
(exit) 1024 (exit) 0

The inner loop is a multiply loop. The number @frétions in the inner loop
is therefore logl0. We must then multiply this by the number ofedgthe outer
loop executes. This gives us 10%@@ which is generalized as f (n) = njog

With the speed of computers today, we are not coeckewith an exact
measurement of an algorithm’s efficiency as muclvasare with its general order
of magnitude [11, 12]. For example, if the analysfi® algorithms shows that one
finishes after 15 iterations while the other takésiterations; then they are both so
fast that we can't see the difference. Howevemrié algorithm finishes after 15
iterations and the other takes 15,000 iteratidiis,is a more significant difference.

We have shown that the number of iterations anrigo executes, f(n), can
be expressed as a function of the number of elesressociated with the algorithm.
Although the efficiency equation derived for a ftion can be complex, we can
examine the dominant factor in the equation to rdeitee the relative magnitude of
the efficiency.

Hence, we don't need to determine the complete uneasf efficiency, only
the factor that determines the magnitude. Thifastthebig-O, as in “on the order
of,” and is expressed as O (n). This simplificatafrefficiency is known asig-O
notation The big-O notation can be derived from
f (n) using the following steps:

1- We set the coefficient of each term to 1.

2- We keep the largest (least efficient) term in thection and discard the
others.

Terms are ranked from most efficient (leftmost teynio least efficient
(rightmost terms) as shown below:
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constants logm n nlogn rf n®...n" 2" n!
For example, let's calculate the big-O notation of the following efficiency:

fy=n00*D 1.0 1,

2 2 2

. L o DZ_+ n
First, we set all coefficients to 1. This gives Us:

Next, we keep the largest term in the function and discard all others. This
leavesn®. Therefore, we can write the big-O notation@gn?).

As another example, let’s look at the polynomial expression:
f(n) =6n* logn+12n®+ 2n* + n+ 12¢

. .. .. — A4 3 2
First, we eliminate all of the coefficientd: (N) =n*logn+n”+n“+n+1

. . 4
We then select the largest term and discard the rest. This glV@:([ls:'Og n)

Note that constants are the MOST efficient. We think about it like this: If we
have an efficiency of 100,000,000 vs. n, which is more efficient? Answer: since n
can equal 100,000,001, the constant is the most efficient. See the following criteria:

Eest

(1) Constant
O(log n) Logarithmic (c € V)
O(log® n) Poalylogarithmic (c £ £7)
Qin) Linear
O({n*) Polynomial {c € 2')
O(c™) Exponential (c € £7)
O(n!) Factorial

Worst

When comparing two algorithmic efficiencies, the “most efficient” one grows
the slowest. Easy test: After computing the efficiencies (e°g.amd i) plug in a
huge value for n; then whichever efficiency results in the smallest value is the most
efficient. Here fi°is more efficient than’n

To get a feel for how much of a difference an algorithm’s efficiency makes,
check out the table (5) together with figure (5). The table assumes an instruction
speed of 1 microsecond, 10 instructions per loop, and n=10,000.

Note: performing an order-of-magnitude analysis implicitly assumes that the
algorithm will be used to solve large problems.
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Table (5). Standard measure of algorithm efficiency.
Efficiency Big-0 Iterations Estimated |
Time |
Lot |H|u:-|.n: “T".n;"-l R 1 W o econd |
= ].-..mr:m 3 oAn) ~ woon 01 neconos |
=== l_l-llf-ﬁ-__ '-i“ht-'.'l:ﬂl 0 D00 7 tacind [
Laoverarstinmic
[aCTET T i o a7 10 0 e e
e ———— —
! E"ﬂh'ﬂ"llﬂll = 0 Ce0ar Mot
Expouientinl e™) - 0 Wt b e e
1_-.::!:_... il H E!I."'-"l 10 (e o e LR &
|
n3|n2 nlogn n
O(n) 7
7 logn
T T T T T T T
n

Fig. (5). Standard measure of algorithm efficiency.

4.2.2. Analysis of theoretical calibration:

Algorithm analysis is the area of computer science that provides tools for
comparing the efficiency of different methods of solution. This analysis concerns
itself primarily with significant differences in efficiency. Usually, significant
differences only arise through superior solutions and rarely through clever coding
tricks. Reductions in computing costs due to clever coding tricks are often more than
offset by reduced program readability, which increases human costs.
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An algorithm analysis should focus on gross diffiees in the efficiency of
algorithms that are likely to dominate the overalkt of a solution. Otherwise, we
could select an algorithm that runs a fraction oSexond faster than another
algorithm yet requires many more hours of our timamplement and maintain.

In our proposed software there are many algorith@se of the very
beginning ones are that for transporting desiga dat every path of the network
paths under study from the program design filecgsithe program carries out the
design operations in a hidden Excel file) and showhem to the designer on the
screen as a table form to ensure the input daia.alfporithm contains the following
iterations:

Fori=3To 25

iii=i-2

If Option1.Value = True Then grdRunData.TextMafrixii) = C.Cells(18, i).Value
If Option2.Value = True Then grdRunData. TextMatfrix{i) = C.Cells(28, i).Value
If Option3.Value = True Then grdRunData. TextMatfrix{i) = C.Cells(38, i).Value
If Option4.Value = True Then grdRunData.TextMatfrix{i) = C.Cells(48, i).Value

If Option1.Value = True Then grdRunData. TextMaixii) = C.Cells
If Option2.Value = True Then grdRunData. TextMaixii) = C.Cells
If Option3.Value = True Then grdRunData. TextMaixii) = C.Cells
If Option4.Value = True Then grdRunData. TextMaixifi) = C.Cells

60, i).Value
61, i).Value
62, i).Value
63, i).Value

-9y

Next

The iterations start from 3 to 25, i.e. 23 pointfich is the maximum
number of points on the same path. Every iteratimmains 4 paths as a maximum
allowed number of paths. Each path has two datéesrthat are final diameters in
mm and the discharge in I/s. As we see in that, |t efficiency of this loop i©
(n) which is a constant efficiency. It is the bestogidhm efficiency.

Another loop is that creates virtual pumps formole. This means that the
total pump station discharge has to be partitioiméal smaller pumps formulation
components that are available in the executionraots. As example, if the total
pump station discharge is 100 I/s and the conatatvs only 40 and 60 I/s pumps,
then it is obvious to use these two discharge puimsulation components. These
virtual formulations are come from both experienod user demands.
Forgf=0To 3
If C.Cells(13, 8).Value <= 30 Then Text40(gf).Tex.Cells(13, 9+ gf).Value Else
Text40(gf).Tes
If C.Cells(13, 8).Value <= 40 And C.Cells(13, 8)Ia> 30 Then Text40(gf).Text =
C.Cells(13, 9 + gf).Value Else Text40(gf + 4). Text
If C.Cells(13, 8).Value <= 50 And C.Cells(13, 8)lva > 40 Then Text40(gf +
8).Text = C.Cells(13, 9 + gf).Value Else Text40(df).Text=
If C.Cells(13, 8).Value <= 60 And C.Cells(13, 8)lva > 50 Then Text40(gf +
12).Text = C.Cells(13, 9 + gf).Value Else Text40{df2).Text=
If C.Cells(13, 8).Value <= 70 And C.Cells(13, 8)lva > 60 Then Text40(gf +
16).Text = C.Cells(13, 9 + gf).Value Else Text40{df6).Text=



A Developed Softwae For an Improved... 97

If C.Cells(13, 8).Value <= 80 And C.Cells(13, 8)lva > 70 Then Text40(gf +
20).Text = C.Cells(13, 9 + gf).Value Else Text4{dgi0). Text=

If C.Cells(13, 8).Value <= 90 And C.Cells(13, 8)lva > 80 Then Text40(gf +
24).Text = C.Cells(13, 9 + gf).Value Else Text40{gf4). Text=

If C.Cells(13, 8).Value <= 100 And C.Cells(13, &lie > 90 Then Text40(gf +
28).Text = C.Cells(13, 9 + gf).Value Else Text40(df8). Text=

If C.Cells(13, 8).Value <= 110 And C.Cells(13, 8lie > 100 Then Text40(gf +
32).Text = C.Cells(13, 9 + gf).Value Else Text4{df2). Text=

If C.Cells(13, 8).Value > 110 Then Text40(gf + 3@kt = C.Cells(13, 9 + gf).Value
Else Text40(gf + 36).Tex

Next
As we see in that loop, the efficiency of this las® (n) which is a constant

efficiency. It is the best algorithm efficiency. lollowing is a group of loops that
are designed efficiently to fulfil the requiremenfshe excel file. The later contains
the design properties such as the internal dianfeteevery pipe type, the design
water duty, pipe class, ... etc. It transports thesmfthe design properties file to the
designer on the screen in order to accept, modifgancel if it is required.

ii=0

Forii=1To9

Text13 (iii - 1).Text = C.Cells(iii + 9, 7).Value
Next

ii=0

Forii=9To 17

Text13 (iii). Text = C.Cells(iii + 1, 11).Value
Next

ii=0

Foriii=18 To 25
Text13 (iii). Text = C.Cells(iii - 15, 20).Value
Next

ii=0
For iii = 26 To 29
Text13 (iii). Text = C.Cells(iii + 11, 5).Value
Next

After the theoretical calibration has been achieved can conclude that, all
the algorithms of the presented software are efficmore than 50% and have the
best quality. This is because the program fulfitset requirement, which is half the
way to the complete algorithm efficiency. The redt the efficiency of the
algorithms which is the memory requirement is abd0t % achieved. This is
because the reserved memory size for the propasedase constants and variables
are so minimized that the available memory sizeHeruser is huge. As a result, the
algorithm efficiency is more than 90 %.
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5. Snap Shots of Some Sophisticated Field Solved Problems
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Figure (6). Two selected screen shots of the softwar e for the complicated networks
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6. Conclusions
We have proposed software for fully integrated giesframework of a multi-
disciplinary approach and cost computations fosgueized pipe lines used in IIP
projects. It can carry out many tasks such as:

« Simulations of flows through the pipe lines implerea in 1IP projects,

« Estimates the cost for the all elements of the pigs including the pump
stations,

» Prepare the engineering estimates and Arabic vegfithe contract which
is necessary to biding stage,

« It includes new features to assist Sobek softwmarextract the date about
the longitudinal sections,

* It gives the ability to users to detect the maximanmd minimum water
levels and

« It prepares the necessary files to change all bstraction points in any
Sobek case.

It has been designed for experts and non-expékis. &he framework is
composed of several modules, grouped around a inirtteaface, while being
capable to interact with one another. Some of #edwlgorithms in the presented
software are reviewed against efficiency. The psagoprogram is calibrated both
practically and theoretically.

In the future, it may add a module to the softmar@repare the necessary
Auto Cad files for layout and longitudinal sectiof the available paths of the
designed mesga,
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